PL EN
THE IMPACT OF CHEMICAL AND CHEMICAL-PHYSICAL MUTAGENISATION ON PHENOTYPIC CHANGES IN THE BACTERIA OF THE SPECIES KOMAGATAEIBACTER XYLINUS
 
Więcej
Ukryj
1
Slovak Academy of Sciences, Institute of Chemistry
 
2
WULS-SGGW, Institute of Food Sciences
 
 
Data publikacji: 10-05-2021
 
 
2019;(599):53-63
 
SŁOWA KLUCZOWE
STRESZCZENIE
Acetic acid bacteria K. xylinus are characterized by, i.a., the ability to produce bacterial cellulose, gluconic acid and dihydroxyacetone. The aim of this study was to use non-directional chemical and chemical-physical mutagenisation and to invastigating the impact of this process on the selected phenotypic features of K. xylinus.. Chemical mutagenisation was carried out with the use of methyl methanesulfonate. Chemical-physical mutagenisation has been extended with the application of UV radiation (λ=254 nm). The obtained mutant was characterized by higher of 56% ability to biosynthesize bacterial cellulose (compared to wild type). The study showed that chemical-physical mutagenisation may be a sufficient method for increasing bacterial cellulose synthesis, while it does not ensure an increased yield of gluconic acid and dihydroxyacetone by the tested strain.
 
REFERENCJE (23)
1.
Ahmed A.S., Farag S.S., Hassan I.A., Botros H. W., 2015. Production of gluconic acid by using some irradiated microorganisms. J. Radiat. Res. Appl. Sci., 8(3), 374-380.
 
2.
An S.J., Lee S.H., Huh J.B., Jeong S.I., Park J.S., Gwon H., Lim Y.M., 2017. Preparation and characterization of resorbable bacterial cellulose membranes treated by electron beam irradiation for guided bone regeneration. IJMS, 18(11), 2236.
 
3.
Błażejak S., Stasiak-Różańska L., Markowski K., Lipińska E., 2011. Zwiększenie zdolności biosyntezy dihydroksyacetonu przez bakterie Gluconacetobacter xylinus za pomocą mutagenizacji promieniowaniem UV. Acta Sci. Pol., Biotechnologia, 10(2), 17-24.
 
4.
Braunberger T.L., Nahhas A.F., Katz L.M., Sadrieh N., Lim H.W., 2018. Dihydroxyacetone: A Review. JDD, 17(4), 387-391.
 
5.
Chen J., Chen J., Zhou C., 2008. HPLC methods for determination of dihydroxyacetone and glycerol in fermentation broth and comparison with a visible spectrophotometric method to determine dihydroxyacetone. JCS, 46(10), 912-916.
 
6.
Chen X., Yuan F., Zhang H., Huang Y., Yang J., Sun D., 2016. Recent approaches and future prospects of bacterial cellulose-based electroconductive materials. J. Mater. Sci., 51(12), 5573-5588.
 
7.
Cutzu R., Coi A., Rosso F., Bardi L., Ciani M., Budroni M., Mannazzu I., 2013. From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant. World J. Microb. Biot, 29(6), 1009-1017.
 
8.
De Wulf, P., Joris K., Vandamme E.J., 1996. Improved cellulose formation by an Acetobacter xylinum mutant limited in (keto)-gluconate synthesis. J. Chem. Technol. Biotechnol, 67(4), 376-380.
 
9.
Gomes R.J., Borges M.D.F., Rosa M.D.F., Castro-Gómez R.J.H., Spinosa W.A., 2018. Acetic acid bacteria in the food industry: Systematics, characteristics and applications. FTB, 56(2), 139-151.
 
10.
Goodarzi A., 2016. UV-induced mutagenesis in lactic acid bacteria. IJGG, 4(1), 1-4.
 
11.
Gullo M., La China S., Falcone P.M., Giudici P., 2018. Biotechnological production of cellulose by acetic acid bacteria: current state and perspectives. Appl. Microbiol. Biotech, 102(16), 6885-6898.
 
12.
Habe H., Shimada Y., Fukuoka T., Kitamoto D., Itagaki M., Watanabe K., Sakaki K., 2010. Use of a Gluconobacter frateurii mutant to prevent dihydroxyacetone accumulation during glyceric acid production from glycerol. Biosci. Biotechnol. Biochemia, 1010052224-1010052224.
 
13.
Hu Z.C., Zheng Y.G., 2011. Enhancement of 1, 3-dihydroxyacetone production by a UV-induced mutant of Gluconobacter oxydans with DO control strategy. Appl. Biochem. Biotech, 165(5-6), 1152-1160.
 
14.
Hungund B.S., Gupta S.G. 2010. Strain improvement of Gluconacetobacter xylinus NCIM 2526 for bacterial cellulose production. Afr. J. Biotechnol, 9(32), 5170-5172.
 
15.
Kose R., Sunagawa N., Yoshida M., Tajima K., 2013. One-step production of nanofibrillated bacterial cellulose (NFBC) from waste glycerol using Gluconacetobacter intermedius NEDO-01. Cellulose, 20(6), 2971-2979.
 
16.
La China S., Zanichelli G., De Vero L., Gullo M., 2018. Oxidative fermentations and exopolysaccharides production by Acetic Acid Bacteria: a mini review. Biotechnol. Lett, 40, (9-10), 1289-1302.
 
17.
Picheth G.F., Pirich C.L., Sierakowski M.R., Woehl M.A., Sakakibara C.N., de Souza C.F., Martin A.A., da Silva R., de Freitas R.A., 2017. Bacterial cellulose in biomedical applications: a review. Int. J. Biol. Macromol., 104, 97-106.
 
18.
Raksha S., Srinivasan S., Prasant G., Prabu R., 2012. Over-expression of gluconic acid in Aspergillus oryzae RP-21 mutants generated by a random mutagenesis approach. 3 Biotech, 2(3), 219-223.
 
19.
Sandoval N.R., Venkataramanan K.P., Groth T.S., Papoutsakis E.T., 2015. Whole-genome sequence of an evolved Clostridium pasteurianum strain reveals Spo0A deficiency responsible for increased butanol production and superior growth. Biotechnol. Biofuels, 8(1), 227.
 
20.
Stasiak-Różańska L., Berthold-Pluta A., Dikshit P., 2018: Valorization of waste glycerol to dihydroxyacetone with biocatalysts obtained from Gluconobacter oxydans. Appl. Sci, 8(12), 2517.
 
21.
Torres F.G., Arroyo J.J., Troncoso O.P., 2019. Bacterial cellulose nanocomposites: An all-nano type of material. Mater. Sci. Eng. C, 98, 1277-1293.
 
22.
Ullah H., Santos H.A., Khan T., 2016. Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose, 23(4), 2291-2314.
 
23.
Yu Q., Li Y., Wu B., Hu W., He M., Hu G. 2020. Novel mutagenesis and screening technologies for food microorganisms: advances and prospects. Appl. Microbiol. Biotech, 1-15.
 
ISSN:0084-5477
Journals System - logo
Scroll to top