PL EN
EFFECT OF THE ADDITIVE OF PYRROLOQUINOLINE QUINONE ON WASTE GLYCEROL BIOCONVERSION TO DIHYDROXYACETONE
 
Więcej
Ukryj
1
WULS-SGGW, Faculty of Food Science
 
 
Data publikacji: 07-07-2021
 
 
2018;(594):59-67
 
SŁOWA KLUCZOWE
STRESZCZENIE
The aim of this study was to determine the effect of selected concentrations (1, 3, 10 or 15 μM) of pyrroloquinoline quinone (PQQ) on waste glycerol bioconversion to dihydroxyacetone (DHA). The reaction was catalyzed by an immobilized (in sodium alginate) cell extract obtained from Gluconobacter oxydans. Concentrations of glycerol and DHA were determined with the gas chromatography method in time 0, 24, 48 and 72 h. In all analyzed variants of the study, the highest consumption of glycerol was observed after 24 h of the process. Immobilized cell extract had the highest enzymatic activity during the first 24 h of bioconversion. Further course of bioconversion had no significant effect on changes in glycerol concentration. Concentration of DHA in all analyzed variants was 9.3 g·L –1 (after 24 h) and did not change significantly till the end of the process. Immobi- lized cell extract showed enzymatic activity towards glycerol in both the first and second cycle of bioconversion. No significant influence of applied doses of PQQ on the bioconversion of waste glycerol to DHA have been observed.
 
REFERENCJE (25)
1.
Adachi O., Yakushi T., 2016. Membrane-bound dehydrogenases of acetic acid bacteria. In: K. Matsushita (Eds.). Acetic acid bacteria. Springer, Tokyo, 273–297.
 
2.
Almeida J.R.M., Fávaro L.C.L., Quirino B.F., 2012. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol. Biofuels 5, #48. DOI 10.1186/1754-6834-5-48.
 
3.
Antolak H., Kręgiel D., 2015. Bakterie kwasu octowego – taksonomia, ekologia oraz wykorzystanie przemysłowe. ŻNTJ 4, 21–35.
 
4.
Ayoub M., Abdullah A.Z., 2012. Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew. Sustain. Energy Rev. 16, 2671–2686.
 
5.
De Vero L., Gullo M., Giudici P., 2010. Acetic acid bacteria, biotechnological applications. In: M.C. Flickinger (Ed.). Encyclopedia of industrial biotechnology: bioprocess bioseparation and cell technology. Wiley, New York, 9–25.
 
6.
Gupta A., Singh V.K., Qazi G.N., Kumar A., 2001. Gluconobacter oxydans: its biotechnological applications. J. Molecular Microbiol. Biotechnol. 3, 445–456.
 
7.
Hölscher T., Goörisch H., 2006. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. J. Bacteriol. 188, 7668–7676.
 
8.
Hu Z.C., Tian S.Y., Ruan L.J., Zheng Y.G., 2017. Repeated biotransformation of glycerol to 1,3-dihydroxyacetone by immobilized cells of Gluconobacter oxydans with glycerol- and urea-feeding strategy in a bubble column bioreactor. Biores. Technol. 233, 144–149.
 
9.
Ikemoto K., Mori S., Mukai K., 2017. Synthesis and crystal structure of pyrroloquinoline quinol (PQQH 2 ) and pyrroloquinoline quinone (PQQ). Acta Crystallogr. B73, 489–497.
 
10.
Kumar G.S., Wee Y., Lee I., Sun H.J., Zhao X., Xia S., Kim S., Lee J., Wang P., Kim J., 2015. Stabilized glicerol dehydrogenase for the conversion of glycerol to dihydroxyacetone. Chem. Eng. J. 276, 283–288.
 
11.
Lapenaite I., Kurtinaitiene B., Razumiene J., Laurianavicius V., Marcinkieviciene L., Bachmatova I., Meskys R., Ramanavicius A., 2005. Properties and analytical application of PQQ – dependent glycerol dehydrogenase from Gluconobacter sp. Anal. Chim. Acta 549, 140–150.
 
12.
Leoneti A.B., Aragão-Leoneti V., de Oliveira S.V.W.B., 2012. Glycerol as a by-product of biodiesel production in Brazil: alternatives for the use of unrefined glycerol. Renew. Energy 45, 138–145.
 
13.
Magnusson O.T., Toyama H., Saeki M., Schwarzenbacher R., Klinman J.P., 2004. The structure of a biosynthetic intermediate of pyrroloquinoline quinone (PQQ) and elucidation of the final step of PQQ biosynthesis. J. Am. Chem. Soc. 126, 5342–5343.
 
14.
Matsushita K., Fujii Y., Ano Y., Toyama H., Shinjoh M., Tomiyama N., Miyazaki T., Sugisawa T., Hoshino T., Adachi O., 2003. 5-keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl. Environ. Microbiol. 69, 1959–1966.
 
15.
Metlitzky M., Puehringe S., Fisher S.J., 2012. Crystal structure of PqqB from Pseudomonas putida. J. Biophys. Chem. 3, 206–210.
 
16.
Peters B., Mientus M., Kostner D., Junker A., Liebl W., Ehrenreich A., 2013. Characterization of membrane-bound dehydrogenases from Gluconobacter oxydans 621H via whole-cell activity assays using multideletion strains. Appl. Microbiol. Biotechnol. 97, 6397–6412.
 
17.
Raspor P., Goranovic D., 2008. Biological applications of acetic acid bacteria. Critical Rev. Biotechnol. 28, 101–124.
 
18.
Richter N., Breicha K., Hummel W., Niefind K., 2010. The three-dimensional structure of AKR11B4, a glycerol dehydrogenase from Gluconobacter oxydans, reveals a tryptophan residue as an accelerator of reaction turnover. J. Molecular Biol. 404, 353–362.
 
19.
Sainz F., Torija M.J., Matsutani M., Kataoka N., Yakushi T., Matsushita K., Mas A., 2016. Determination of dehydrogenase activities involved in D-glucose oxidation in Gluconobacter and Acetobacter strains. Front. Microbiol. 7, #1358. DOI 10.3389/fmicb.2016.01358.
 
20.
Stasiak-Różańska L., Błażejak S., Gientka I., Bzducha-Wróbel A., Lipińska E., 2017. Utilization of a waste glycerol fraction using and reusing immobilized Gluconobacter oxydans ATCC 621 cell extract. Electr. J. Biotechnol. 27, 44–48.
 
21.
Tan H., Aziz A.A., Aroua M., 2013. Glycerol production and its applications as a raw material: a review. Renew. Sustain. Energy Rev. 27, 118–127.
 
22.
Van Lare I.J., Claus G.W., 2007. Purification and properties of NAD(P)-independent polyol dehydrogenase complex from the plasma membrane of Gluconobacter oxydans. Can. J. Microbiol. 53, 504–508.
 
23.
Wei Q., Ran T., Ma Ch., He J., Xu D., Wang W., 2016. Crystal structure and function of PqqF protein in the pyrroloquinoline quinone biosynthetic pathway. J. Biol. Chem. 291, 15575–15587.
 
24.
Yakushi T., Terada Y., Ozaki S., Kataoka N., Akakabe Y., Adachi O., Matsutani M., Matsushita K., 2018. Aldopentoses as new substrates for the membrane-bound, pyrroloquinoline quinone-dependent glycerol (polyol) dehydrogenase of Gluconobacter sp. Appl. Microbiol. Biotechnol. 102, 3159–3171.
 
25.
Yang F., Hanna M.A., Sun R., 2012. Value-added uses for crude glycerol – a byproduct of biodiesel production. Biotechnol. Biofuels 5, 13–23.
 
ISSN:0084-5477
Journals System - logo
Scroll to top