The aim of this study was to determine the effect of heat treatment of whey
protein (50–90°C) and active acidity (pH 4.0–10.0) on the textural properties and appearance of whey protein-pectin gels. The following parameters were determined: hardness, adhesiveness, springiness index, gumminess and appearance of gels. It was found that
the increase of heat treatment temperature of whey proteins leads to the increase of textural
parameters. The highest values of hardness, springiness index and gumminess was observed for gels from whey proteins heated at 90°C. The highest adhesiveness was demonstrated by gels from whey proteins heated at 80°C. Gels at pH 5.5 and 6.0 exhibited the highest
hardness, whereas gels at alkaline pH (above 8.0) – the highest adhesiveness. Additionally,
the study showed a possibility to form protein-pectin gels by modifying the heat treatment
temperature and acidity of the environment.
REFERENCJE(29)
1.
Anema S.G., 2009. The whey proteins in milk: thermal denaturation, physical interactions and effects on the functional properties of milk. W: A. Thompson, M. Boland, H. Singh (red.), Milk proteins: from Expression to Food. Academic Press, Amsterdam, 239–282.
Brownlow S., Cabral J.H.M., Cooper R., Flower D.R., Yewdall S.J., Polikarpov I., North A.C.T., Sawyer L., 1997. Bovine β-lactoglobulin at 1.8Å resolution – still an enigmatic lipocalin. Structure 5, 481–495.
Giroux H., Houde J., Britten M., 2010. Preparation of nanoparticels from denaturated whey protein by pH-cycling treatment. Food Hydrocolloid 24, 341–346.
Havea P., Carr A.J., Creamer L.K., 2004. The roles of disulphide and non-covalent bonding in the functional properties of heat-induced whey protein gels. J. Dairy Res. 71, 330–339.
Kharlamova A., Chassenieux C., Nicolai T., 2018a. Acid-induced gelation of whey protein aggregates: Kinetics, gel structure and rheological properties. Food Hydrocolloid 81, 263–272.
Kharlamova A., Inthavong W., Nicolai T., Chassenieux C., 2016. The effect of aggregation into fractals or microgels on the charge density and the isoionic point of globular proteins. Food Hydrocolloid 60, 470–475.
de Kruif C.G., Weinbreck F., de Vries R., 2004. Complex coacervation of proteins and anionic polysaccharides. Curr. Opin. Colloid Interface Sci. 9, 340–349.
Munialo C.D., van der Linden E., Ako K., Nieuwland M., Van As H., de Jongh H.H.J., 2016. The effect of polysaccharides on the ability of whey protein gels to either store or dissipate energy upon mechanical deformation. Food Hydrocolloid 52, 707–720.
Qi P.X., Onwulata C.I., 2011. Physical properties, molecular structures and protein quality of texturized whey protein isolate: effect of extrusion moisture content. J. Dairy Sci. 94, 2231–2244.
Sağlam D., Venema P., de Vries R., van der Linden E., 2014. Exceptional heat stability of high protein content dispersions containing whey protein particles. Food Hydrocolloid 34, 68–77.
Setiowati A.D., Saeedi S., Wijaya W., Van der Meeren P., 2017. Improved heat stability of whey protein isolate stabilized emulsions via dry heat treatment of WPI and low methoxyl pectin: Effect of pectin concentration, pH, and ionic strength. Food Hydrocolloid 63, 716–726.
Spotti M., Perduca M.J., Piagentini A., Santiago L.G., Rubiolo A.C., Carrara C.R., 2013. Gel mechanical properties of milk whey protein-dextran conjugates obtained by Maillard reaction. Food Hydrocolloid 31, 26–32.
Vithanage C.R., Grimson M.J., Willis P.R., Harrison P., Smith B.G., 2010. Rheological and structural properties of high-methoxyl esterified, low-methoxyl esterified and low-methoxyl amidated pectin gels. J. Texture Stud. 41, 899–927.
Wijaya W., Van der Meeren P., Patel A.R., 2017. Cold-set gelation of whey protein isolate and low-methoxyl pectin at low pH. Food Hydrocolloid 65, 35–45.
Zhang S., Zhang Z., Lin M.S., Vardhanabhuti B., 2012. Raman spectroscopic characterization of structural changes in heated whey protein isolate upon soluble complex formation with pectin at near-neutral pH. J. Agr. Food Chem. 48, 12029–12035.
Przetwarzamy dane osobowe zbierane podczas odwiedzania serwisu. Realizacja funkcji pozyskiwania informacji o użytkownikach i ich zachowaniu odbywa się poprzez dobrowolnie wprowadzone w formularzach informacje oraz zapisywanie w urządzeniach końcowych plików cookies (tzw. ciasteczka). Dane, w tym pliki cookies, wykorzystywane są w celu realizacji usług, zapewnienia wygodnego korzystania ze strony oraz w celu monitorowania ruchu zgodnie z Polityką prywatności. Dane są także zbierane i przetwarzane przez narzędzie Google Analytics (więcej).
Możesz zmienić ustawienia cookies w swojej przeglądarce. Ograniczenie stosowania plików cookies w konfiguracji przeglądarki może wpłynąć na niektóre funkcjonalności dostępne na stronie.