PL EN
POSSIBILITY OF USING PREPARATIONS CONTAINING POSSIBILITY OF USING PREPARATIONS CONTAINING AMINO ACIDS OR PROBIOTIC, OR THEIR MIXTURES, AMINO ACIDS OR PROBIOTIC, OR THEIR MIXTURES, TO PROTECT ROSES AGAINST POWDERY MILDEW TO PROTECT ROSES AGAINST POWDERY MILDEW
 
Więcej
Ukryj
1
The National Institute of Horticultural Research in Skierniewice, Department of Phytopathology
2
Biopharmacotech, Częstochowa
Data publikacji: 28-10-2021
 
2020;(602):35–47
 
SŁOWA KLUCZOWE
STRESZCZENIE
One of the most common and most dangerous diseases in rose cultivation under cover and in the open field is powdery mildew caused by Podosphaera pannosa. Powdery mildew is also a common disease in many agricultural and horticultural plant species, contributing to significant reduction in yield and/or decorative value. In the study, preparations containing amino acids or a probiotic were used to spray plants 4 times every 7 days individually or in a mixture at various concentrations to reduce the development of powdery mildew on rose plants grown under cover. Agro-Sorb Folium at the concentrations of 0.25, 0.5, 1 and 2% was shown to have an efficacy of 77.4 to 92%, depending on the concentration. Agro-Sorb L-Amino + used in the same concentrations showed an efficacy of 73 to 91%. By comparison, Agro-Sorb Folium used at 1% in a mixture with the EmFarma Plus probiotic at 0.8 and 2% had, depending on the concentration, an efficacy of 90.5 to 100% (no symptoms of powdery mildew). Agro-Sorb L-Amino + used at 1% in a mixture with the EmFarma Plus probiotic at 0.8 and 2% showed, depending on the concentration, an efficacy of 92 to 97.8%. The study showed a significant increase in the effectiveness of the EmFarma Plus preparation containing probiotic bacteria when it was combined with a 1% dose of the growth stimulant Agro-Sorb Folium or Agro-Sorb L-Amino + , compared to the use of the probiotic preparation alone. In each observation, the increase in the concentration of the tested amino acids and probiotic, used individually as well as in a mixture, was associated with a significant increase in their effectiveness. After completion of the experiment, it was found that the rose plants sprayed with Agro-Sorb Folium at a concentration of 0.5% or higher, and with NaturalCrop SL at a concentration of 1.0% had a significantly higher fresh weight of the aboveground parts, ranging from 12.2 to 18.3%, compared to the control plants.
 
REFERENCJE (36)
1.
Abbott W.S., 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265–267.
 
2.
Aly A.A., Hussein E.M., Omar M.R., Abd-Elsalam K.A., 2010. Effects of amino acids in cotton seeds against the resistance to Fusarium wilt diseases. Allelopathy J. 26(1), 83–89.
 
3.
Bakry M.A., Rizk R.H., 1967. Seed transmission of Fusarium oxysporum f. sp. vasinfectum, the causal agent of cotton wilt in the United Arab Republic. Agricultural Research (Cairo) 45, 1–4.
 
4.
Chapman C.M.C., Gibson G.R., Rowland I., 2011. Health benefits of probiotics: are mixture more effective than single strains? Eur J Nutr. 50, 1–17.
 
5.
Elmhirst J.F., Haselhan C., Punja Z.K., 2011. Evaluation of biological agents for control of botrytis blight of geranium and powdery mildew of rose. Can. J. Plant Pathol. 33(4), 499–505.
 
6.
Forrsten S.D., Sindelar C.W., Ouwehand A.C., 2011. Probiotics from an industrial perspective. Anaerobe 17, 410–413.
 
7.
Gałązka A., 2013. Przemiany związków fenolowych a rola amoniakoliazy L-fenyloalaninowej (PAL) w indukcji mechanizmów obronnych rośliny. Polish Journal of Agronomy 15, 83–88 [in Polish].
 
8.
García-Gutiérrez L., Zeriouh H., Romero D., Cubero J., de Vicente1 A., Pérez-García1 A., 2013. The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate and salicylic acid-dependent defence responses. Microb. Biotechnol. 6(3), 264–274. DOI: 10.1111/1751-7915.12028.
 
9.
Gastelum F.R., Rodriguez G.H., Valenzuela C.M., 2014. First report of powdery mildew (Podosphaera pannosa) of roses in Sinaloa, Mexico. Plant Dis. 98, 1442.
 
10.
Ghazvini R.D., Kouhsari E., Zibafar E., Hashemi S.J., Amini A., Niknejad F., 2016. Antifungal Activity and Aflatoxin Degradation of Bifidobacterium bifidum and Lactobacillus fermentum Against Toxigenic Aspergillus parasiticus. Open Microbiol. J. 10, 197–201.
 
11.
Gibson G.R., Roberfroid M.B., 1995. Dietary modulation of the colonic microbiota: introducing the concept of prebiotics. J Nutr. 125, 1401–1412.
 
12.
Granato D., Branko G.F., Cruz A.G., de Assis Fonseca Faria J., Shah P.N., 2010. Probiotic dairy products as functional foods. Compr. Rev. Food Sci. Food Saf. 9, 455–470.
 
13.
Hasabi V., Askari H., Alavi S.M., Zamanizadeh H., 2014. Effect of amino acid application on induced resistance against citrus canker disease in lime plants. J. Plant Prot. Res. 54(2), 144–149.
 
14.
Jach M., Łos R., Maj M., Malm A., 2013. Probiotyki – aspekty funkcjonalne i technologiczne. Postęp. Mikrobiol. 52, 2, 161–170 [in Polish].
 
15.
Kuć J., Barnes E., Daftsios A., Williams E.B., 1959. The effect of amino acids on susceptibility of apple varieties to scab. Phytopathology 49, 313–315.
 
16.
Kim Y.S., Song J.G., Lee I., Yeo W.H., Yun B.S., 2013. Bacillus sp. BS061 suppresses powdery mildew and gray mold. Mycobiology 41, 108–111.
 
17.
Kumar V., Chandel S., 2018. Management of rose powdery mildew (Podosphaera pannosa) through ecofriendly approaches. Indian Phytopathology 71, 393–397. DOI: 10.1007/s42360-018-0050-y.
 
18.
Laitila A., Alakomi H.L., Raaska L., Mattila-Sandholm T., Haikara A., 2002. Antifungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and in malting of barley. J. Appl. Microbiol. 93(4), 566–576.
 
19.
Mehta A., Mehta P., Chopra S., 1991. Effect of various nitrogenous sources on the production of pectolitic and cellulolytic enzymes by Fusarium oxysporum and F. moniliforme. Zentralblatt Fur Microbiologie 146, 393–398.
 
20.
Mukta J.A., Rahman M., As Sabir A., Gupta D.R., Surovy M.Z., Rahman M., Islam M.T., 2017. Chitosan and plant probiotics application enhance growth and yield of strawberry. Biocatal. Agric. Biotechnol. 11, 9–18.
 
21.
Saxelin M., 2008. Probiotic Formulations and Applications, the Current Probiotics Market, and Changes in the Marketplace: A European Perspective. Clin. Infect. Dis. 46(2), 76–79. Retrieved from https://academic.oup.com/cid/a... [access 09.07.2020].
 
22.
Solarska E., 2011. Probiotic microorganisms with fermented plant extracts in protection of organic hops. Proceedings of the Scientific Commission I.H.G.C. International Hop Growers` ConventionI.H.G.C., 71–74.
 
23.
Solarska E., 2013. Consortium of probiotics microorganisms as biocontrol agent of pests and diseases on hops. 2nd International Conference and Exhibition on Probiotics & Functional Foods, October 23–25, Orlando, Fl. USA.
 
24.
Trias R., Baneras L., Montesinos E., Badosa E., 2008. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int. Microbiol. 11, 231–236.
 
25.
Tsuda K., Tsuji G., Higashiyama M., Ogiyama H., Umemura K., Mitomi M., Kubo Y., Kosaka Y., 2016. Biological control of bacterial soft rot in Chinese cabbage by Lactobacillus plantarum strain BY under field conditions. Biological Control 100, 63–69.
 
26.
Van Andel O.M., 1966. Amino acids and plant diseases. Annu. Rev. Phytopathol (4), 349–368.
 
27.
Visser R., Holzapfel W.H., Bezuidenout J.J., Kotze J.M., 1986. Antagonism of lactic acid bacteria against phytopathogenic bacteria. Appl. Environ. Microbiol. 52, 552–555.
 
28.
Wang H.K., Yan H., Shin J., Huang L., Zhang H.P., Qi W., 2011. Activity against plant pathogenic fungi of Lactobacillus plantarum IMAU10014 isolated from Xinjiang koumiss in China. Ann. Microbiol 61, 879–885. DOI: 10.1007/s13213-011-0209-6.
 
29.
Woltz S.S., Jones J.P. 1970. Effects of twenty natural amino acids on pathogenesis of Homestead 24 tomato caused by Fusarium oxysporum f. sp. lycopersici race 1 and 2. Florida State Horticultural Society 83: 175–179.
 
30.
Wojdyła A.T., 2015. Effect of vegetable and mineral oils on the development of Sphaerotheca pannosa var. rosae – the causal agent of powdery mildew of rose. Bulg. J. Agric. Sci. 21(4), 855–862.
 
31.
Wojdyła A.T., 2016. Możliwość wykorzystania naturalnych i syntetycznych produktów w ochronie róży przed Podosphaera pannosa. ZPPNR 586, 89–98 [in Polish].
 
32.
Wojdyła A.T., 2017. Możliwość wykorzystania środków zawierających aminokwasy w ochronie róż przed Podosphaera pannosa oraz ich wpływ na rozwój roślin. Prog. Plant Prot. 57, 82–87 [in Polish].
 
33.
Wojdyła A.T., 2018. Potential of using products containing amino acids in the protection of garden pansy (Viola wittrockiana) against pansy leaf anthracnose (Colletotrichum violae-tricoloris) and their impact on plant growth. Prog. Plant Prot. 58(2), 107–114.
 
34.
Wojdyła A.T., 2019. Evaluation of the effectiveness of Agro-Sorb Folium and its mixtures with fungicides in the protection of roses against powdery mildew. ZPPNR 598, 63–74. DOI: 10.22630/ZPPNR.2019.598.17.
 
35.
Wojdyła A.T., Sobolewski J., 2016. Możliwość wykorzystania środków zawierających aminokwasy w ochronie fasoli przed zgnilizną twardzikową. ZNIO 24, 131–140 [in Polish].
 
36.
Živković S.T., Stošić S.S., Ristić D.T., Vučurović I.B., Stevanović M.Lj., 2019. Antagonistic potential of Lactobacillus plantarum against some postharvest pathogenic fungi. Зборник Матице српске за природне науке/Matica Srpska J. Nat. Sci. 136, 79–88.
 
ISSN:0084-5477