PL EN
THE ROLE OF BIOSURFACTANTS IN SOIL REMEDIATION
 
Więcej
Ukryj
1
WULS-SGGW, Faculty of Food Sciences
 
 
Data publikacji: 06-07-2021
 
 
2019;(596):33-43
 
SŁOWA KLUCZOWE
STRESZCZENIE
Biosurfactants are promising compounds in the process of soil remediation be- cause of their natural origin and amphiphilic structure as well as beneficial physicochemical and technological properties. They are capable to remove toxic substances (heavy metals, crude oil, hydrocarbons and their derivatives) from contaminated soil using various mechanisms of action, such as mobilization, solubilization, complexation, emulsification. Moreover, natural surfactants cooperate with microorganisms in the process of bioremediation and increase the bioavailability of organic pollutants for their cells. They also affect the microbial cell surface properties and the cellular phospholipid membrane and in this way they can enhance the intracellular transport leading to the increase in biodegradation rate. In this paper, the origin, structures and resulting properties of biosurfactants were described to understand their mechanisms of action in soil remediation, especially in removing of organic pollutants and heavy metals. The examples of their practical application in soil bioremediation were also presented.
 
REFERENCJE (36)
1.
Agamuthu P., Tan Y.S., Fauziah S.H., 2013. Bioremediation of hydrocarbon contaminated oil using selected organic wastes. Proc. Environ. Sci. 18, 694–702.
 
2.
Al-Tahhan R.A., Sandrin T.R., Bodour A.A., Maier R.M., 2000. Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl. Environ. Microbiol. 66, 3262–3268.
 
3.
Araújo H., Andrade R., Montero-Rodríguez D., Rubio-Ribeaux D., Alves da Silva C.A., Campos-Takaki G.M., 2019. Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications. Microb. Cell Fact. 18, 2–15.
 
4.
Banat I.M., Franzetti A., Gandolfi I., Bestetti G., Martinotti M.G., Fracchia L., Smyth T.J., Marchant R., 2010. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 87, 427–444.
 
5.
Barkay T., Navon-Venezia S., Ron E.Z., Rosenberg E., 1999. Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl. Environ. Microbiol. 65, 2697–2702.
 
6.
Congiu E., Ortega-Calvo J., 2014. Role of desorption kinetics in the rhamnolipid-enhanced biodegradation of polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 48, 10869–10877.
 
7.
Cooper D.G., MacDonald C.R., Duff S.J.B., Kosaric N., 1981. Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl. Environ. Microbiol. 42, 408–412.
 
8.
De S., Malik S., Ghosh A., Saha R., Saha B., 2015. A review on natural surfactants. RSC Adv. 5, 65757–65767.
 
9.
Dasari S., Subbaiah K.C.V., Wudayagiri R., Valluru L., 2014. Biosurfactant-mediated biodegradation of polycyclic aromatic hydrocarbons – naphthalene. Bioremediat. J. 18, 258–265.
 
10.
Franzetti A., Caredda P., Ruggeri C., La Colla P., Tamburini E., Papacchini M., Bestetti G., 2009. Potential applications of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies. Chemosphere 75, 801–807.
 
11.
Geetha S.J., Banat I.M., Joshi S.J., 2018. Biosurfactants: Production and potential applications in microbial enhanced oil recovery (MEOR). Biocatal. Agric. Biotechnol. 14, 23–32.
 
12.
Joshi-Navare K., Khanvilkar P., Prabhune A., 2013. Jatropha oil derived sophorolipids: production and characterization as laundry detergent additive. Biochem. Res. Int. 3, 133–143.
 
13.
Juwarkar A.A., Nair A., Dubey K.V., Singh S.K., Devotta S., 2007. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68, 1996–2002.
 
14.
Kaczorek E., Olszanowski A., 2011. Uptake of hydrocarbon by Pseudomonas fluorescens (P1) and Pseudomonas putida (K1) strains in the presence of surfactants: A cell surface modification. Water Air Soil Pollut. 214, 451–459.
 
15.
Kaczorek E., Pacholak A., Zdarta A., Smułek W., 2018. The impact of biosurfactants on microbial cell properties leading to hydrocarbon bioavailability increase. Colloid. Interface. 2, 35–57.
 
16.
Khan N.T., Jameel N., Khan M.J., 2018. A brief overview of contaminated soil remediation methods. Biotechnol. Ind. J. 14, 168–171.
 
17.
Lang S., Wullbrandt D., 1999. Rhamnose lipids – biosynthesis, microbial production and application potential. Appl. Microbiol. Biotechnol. 51, 22–32.
 
18.
Lin W., Liu S., Tong L., Zhang Y., Yang J., Liu W., Guo C., Xie Y., Lu G., Dang Z., 2017. Effects of rhamnolipids on the cell surface characteristics of Sphingomonas sp. GY2B and the biodegradation of phenanthrene. RSC Adv. 7, 24321–24330.
 
19.
Lombi E., Hamon R.E., 2005. Remediation of polluted soils. In: D. Hillel (ed.), Encyclopedia of soils in the environment. Elsevier, Amsterdam.
 
20.
Miller R.M., 1995. Biosurfactant-facilitated remediation of metal-contaminated soils. Environ. Health Perspect. 103, 59–62.
 
21.
Mulligan C.N., 2009. Recent advances in the environmental applications of biosurfactants. Curr. Opin. Colloid Interface Sci. 14, 372–378.
 
22.
Mulligan C.N., 2017. Biosurfactants for the remediation of metal contamination. In: S. Das, H.R. Dash (eds), Handbook of Metal-Microbe Interactions and Bioremediation. CRC Press, Boca Raton.
 
23.
Mulligan C.N., Yong R.N., Gibbs B.F., James S., Bennet H.P.J., 1999. Metal removal from contaminated soil and sediments by the biosurfactant surfactin. Environ. Sci. Technol. 33, 3812–3820.
 
24.
Müller M.M., Kügler J.H., Henkel M., Gerlitzki M., Hörmann B., Pöhnlein M., Syldatk C., Hausmann R., 2012. Rhamnolipids – next generation surfactants? J. Biotechnol. 162, 366–380.
 
25.
Pacwa-Płociniczak M., Płaza G.A., Piotrowska-Seget Z., Cameotra S.S., 2011. Environmental applications of biosurfactants: recent advances. Int. J. Mol. Sci. 12, 633–654.
 
26.
Perfumo A., Smyth T.J.P., Marchant R., Banat I.M., 2010. Production and roles of biosurfactant and bioemulsifiers in accessing hydrophobic substrates. In: Timmis K.N. (ed.), Microbiology of Hydrocarbons, Oils, Lipids and Derived Compounds. Heidelberg, Springer-Verlag, Berlin.
 
27.
Rosenberg E., Ron E.Z., 1999. High- and low-molecular-mass microbial surfactants. Appl. Microbiol. Biotechnol. 52, 154–162.
 
28.
Rufino R.D., Rodrigues G.I.B., Campos-Takaki G.M., Sarubbo L.A., Ferreira S.R.M., 2011. Application of a yeast biosurfactant in the removal of heavy metals and hydrophobic contaminant in a soil used as slurry barrier. Appl. Environ. Soil Sci. 2011, 1–7.
 
29.
Sánchez M., Aranda F.J., Teruel J.A., Espuny M.J., Marqués A., Manresa Á., Ortiz A. 2010. Permeabilization of biological and artificial membranes by a bacterial dirhamnolipid produced by Pseudomonas aeruginosa. J. Colloid Interface Sci. 341, 240–247.
 
30.
Sarubbo L.A., Brasileiro P.P.F., Silveira G.N.M, Luna J.M., Rufino R.D., dos Santos V.A., 2018. Application of a low cost biosurfactant in the removal of heavy metals in soil. Chem. Eng. Trans. 64, 433–438.
 
31.
Schippers C., Geßner K., Müller T., Scheper T., 2000. Microbial degradation of phenanthrene by addition of a sophorolipid mixture. J. Biotechnol. 83, 189–198.
 
32.
Sotirova A., Spasova D., Vasileva-Tonkova E., Galabova D., 2009. Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Microbiol. Res. 164, 297–303.
 
33.
Uzoigwe C., Burgess J.G., Ennis C.J., Rahman P.K.S.M., 2015. Bioemulsifiers are not biosurfactants and require different screening approaches. Front. Microbiol. 6, 245–251.
 
34.
Vijayakumar S., Saravanan V., 2015. Biosurfactants – types, sources and applications. Res. J. Microbiol. 10, 181–192.
 
35.
Wang S., Mulligan C.N., 2004. Rhamnolipid foam enhanced remediation of cadium and nickel contaminated soil. Water Air Soil Pollut. 157, 315–330.
 
36.
Yao Y., Huang G.H., An C.J., Cheng G.H., Wei J., 2017. Effects of freeze-thawing cycles on desorption behaviorsof PAH-contaminated soil in the presence of a biosurfactant: A case study in western Canada. Environ. Sci. Proc. Imp. 19, 874–882.
 
ISSN:0084-5477
Journals System - logo
Scroll to top