PL EN
SYNERGISTIC ANTIBACTERIAL EFFECT OF PHENOLIC ACIDS AGAINST ESCHERICHIA COLI
 
Więcej
Ukryj
1
WULS-SGGW, Institute of Food Sciences
 
 
Data publikacji: 28-06-2021
 
 
2019;(598):51-62
 
SŁOWA KLUCZOWE
STRESZCZENIE
The aim of the study was to demonstrate the interactions occurring in the mixtures of phenolic acids and their effect on the growth of Escherichia coli ATCC 25922 and biofilm formation. The type of interaction between phenolic acids was determined using chessboard methods. The amount of the resulting biofilm was determined with spectrophotometric analysis. We found a synergy or partial synergy between phenolic acids in limiting the growth of E. coli bacteria. All the examined acids, i.e.: gallic (Gala), gentisic (Gena), vanillic (Va), p-coumaric (pKa), and trans-cinnamic (tCa), and their mixtures inhibited the growth of the E. coli. The most effective E. coli inhibitory effect was observed for a mixture of three acids: tCa, pKa, and Gena. All the considered acids and their mixtures significantly reduced the formation of biofilm by E. coli. Synergy or partial antibacterial synergy between examined phenolic acids against E. coli have been found.
 
REFERENCJE (39)
1.
Al-Shabib N.A., Husain F.M., Ahmad I., Khan M.S., Khan R.A., Khan J.M., 2017. Rutin inhibits mono and multi-species biofilm formation by foodborne drug resistant Escherichia coli and Staphylococcus aureus. Food Control 79, 325–332.
 
2.
Alzoreky N.S., Nakahara K., 2003. Antibacterial activity of extracts from some edible plants commonly consumed in Asia. Int. J. Food Microbiol. 80, 223–230.
 
3.
Borges A., Saavedra M.J., Simőes M., 2012. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling 28(7), 755–767.
 
4.
Carvalho R.S., Carollo C.A., Magalhăes J.C. de, Palumbo J.M.C., Boaretto A.G., Nunes e Sá I.C., Ferraz A.C., Lima W.G., Siqueira J.M. de, Ferreira J.M.S., 2018. Antibacterial and antifungal activities of phenolic compound-enriched ethyl acetate fraction from Cochlospermum regium (mart. Et. Schr.) Pilger roots: Mechanisms of action and synergism with tannin and gallic acid. S. Afr. J. Bot. 114, 181–187.
 
5.
Cui H., Zhang C., Li C., Lin L., 2020. Inhibition of Escherichia coli O157:H7 biofilm on vegetable surface by solid liposomes of clove oil. LWT-Food Sci. Technol. 117, 108656. https://doi.org/10.1016/j.lwt.....
 
6.
Cushnie T.P.T., Lamb A.J., 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Ag. 26, 343–356.
 
7.
Davidson P.M., Taylor T.M., Schmidt S.E., 2013. Chemical preservatives and natural antimicrobial compounds. In: M.P. Doyle, R.L. Buchanan (Eds.), Food Microbiology: Fundamentals and frontiers. ASM Press, Washington, DC, 765–801.
 
8.
Dupont S., Caffin N., Bhandari B., Dykes G.A., 2006. In vitro antibacterial activity of Australian native herb extracts against food-related bacteria. Food Control 17, 929–932.
 
9.
European Food Safety Authority and European Centre for Disease Prevention and Control – EFSA and ECDC, 2018. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA Journal 16(12), 1–262.
 
10.
Gutiérrez-Fernández J., García-Armesto M.R., Álvarez-Alonso R., Arriaga P., Rúa D., 2013. Antimicrobial activity of binary combinations of natural and synthetic phenolic antioxidants against Enterococcus faecalis. J. Dairy Sci. 96, 4912–4920.
 
11.
Haraguchi H., Tanimoto K., Tamura Y., Mizutani K., Kinoshita T., 1998. Mode of antibacterial action of retrochalcones from Glycyrrhiza inflata. Phytochemistry 48, 120–129.
 
12.
Hara-Kudo Y., Kobayashi A., Sugita-Konishi Y., Kondo K., 2004. Antibacterial activity of plants used in cooking for aroma and taste. J. Food Prot. 67, 2820–2824.
 
13.
Hąc-Wydro K., Flasiński M., Romańczuk K., 2017. Essential oils as food eco-preservatives: Model system studies on the effect of temperature on limonene antibacterial activity. Food Chem. 235, 127–135.
 
14.
Heleno S.A., Martins A., Queiroz M.J., 2015. Bioactivity of phenolic acid: Metabolites versus parent compounds: A review. Food Chem. 173, 501–513.
 
15.
Herald P., Davidson P., 1983. Antibacterial Activity of Selected Hydroxycinnamic Acids. J. Food Sci. 48, 1378–1379.
 
16.
Ho C.H., Noryati I., Sulaiman S.-F., Rosma A., 2010. In vitro antibacterial and antioxidant activities of Orthosiphon stamineus Benth. extracts against food-borne bacteria. Food Chem. 122, 1168–1172.
 
17.
Khorshidian N., Yousefi M., Khanniri E., Mortazavian A.M., 2018. Potential application of essential oils as antimicrobial preservatives in cheese. Innov. Food Sci. Emerg. Technol. 45, 62–72.
 
18.
Kim S.A., Rhee M.S., 2015. Highly Enhanced Bactericidal Effects of Medium Chain Fatty Acids (Caprylic, Capric, and Lauric Acid) Combined with Edible Plant Essential Oils (Carvacrol, Eugenol, β-Resorcylic Acid, Trans-Cinnamaldehyde, Thymol, and Vanillin) Against Escherichia coli O157:H7. Food Control. 60, 447–454.
 
19.
Liu H., Pei H., Hana Z., Feng G., Li D., 2015. The antimicrobial effects and synergistic antibacterial mechanism of the combination of ε-Polylysine and nisin against Bacillus subtilis. Food Control 47, 444–450.
 
20.
Majeed F.A., Munir H., Rashid R., Zubair M.T., 2019. Antimicrobial, cytotoxicity, mutagenicity and anti-epileptic potential of ethanol extracts of a multipurpose medicinal plant Dalbergia sissoo. Biocat. Agricult. Biotechnol. 19, 101–155.
 
21.
Mattila P., Hellström J., 2007. Phenolic acids in potatoes, vegetables, and some of their products. J. Food Compos. Anal. 20(3–4), 152–160.
 
22.
Medini F., Fellah H., Ksouri R., Abdelly C., 2014. Total phenolic flavonoid and tannin contents and antioxidant andantimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum. JTUSCI 8, 216–224.
 
23.
Meira N.V.B., Holley R.A., Bordin K., Macedo R.E.F. de, Luciano F.B., 2017. Combination of essential oil compounds and phenolic acids against Escherichia coli O157:H7 in vitro and in dry-fermented sausage production. Int. J. Food Microbiol. 260, 59–64.
 
24.
Merkl R., Hrádková I., Filip V., Šmidrkal J., 2010. Antimicrobial and Antioxidant Properties of Phenolic Acids Alkyl Esters. Czech J. Food Sci. 28, 275–279.
 
25.
Mirzoeva O.K., Grishanin R.N., Calder P.C., 1997. Antimicrobial action of propolis and some of its components: the effects on growth, membrane potential and motility of bacteria. Microbiol. Res. 152, 239–246.
 
26.
National Committee for Clinical Laboratory Standards, 2009a. Methods for Determining Bactericidal Activity of Antimicrobial Agents. Approved Guideline. 8th ed. CLSI document M26. Clinical and Laboratory Standards Institute, Wayne, PA.
 
27.
National Committee for Clinical Laboratory Standards, 2009b. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard. 8th ed. CLSI document M07-A8. Vol. 29(2). Clinical and Laboratory Standards Institute, Wayne, PA.
 
28.
Oliveira E., Nguyen C.H., Stepanian K., Cossu A., Nitin N., 2019. Enhanced bacterial inactivation in apple juice by synergistic interactions between phenolic acids and mild food processing technologies. IFSET 56, 102–186.
 
29.
Prabakaran M., Kim S-H., Sasirek A., Chandrasekaran M., Chung I-M., 2018. Polyphenol composition and antimicrobial activity of various solvent extracts from different plant parts of Moringa oleifer. Food Biosci. 26, 23–29.
 
30.
Rauha J-P., Remes S., Heinonen M., Hopia A., Kähkönen M., Kujala T., Pihlaja K., Vuorela H., Vuorela P., 2000. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 56, 3–12.
 
31.
Satyajit D., Sarker A., Nahar L., Kumarasamy Y., 2007. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42, 321–324.
 
32.
Shan B., Cai Y., Brooks J.D., Corke H., 2007. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int. J. Food Microbiol. 117, 112–119.
 
33.
Sirk T.W., Brown E.F., Friedman M., Sum A.K., 2009. Molecular binding of catechins to biomembranes: relationship to biological activity. J. Agricult. Food Chem. 57, 6720–6728.
 
34.
Stepanovic S., Vukovic D., Hola V., Bonaventura G.D., Djukic S., Cirkovic I., 2007. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115, 891–899.
 
35.
Torres C.A., Zamora C.M.P., Nuńez M.B., Gonzalez A.M., 2018. In vitro antioxidant, antilipoxygenase and antimicrobial activities of extracts from seven climbing plants belonging to the Bignoniaceae. J. Integr. Med. 16, 255–262.
 
36.
Tuncel G., Nergiz C., 1993. Antimicrobial effect of some olive phenols in a laboratory medium. Lett. Appl. Microbiol. 17, 300–302.
 
37.
Ugurlu A., Yagci A.K., Ulusoy S., Aksu B., Bosgelmez-Tinaz G., 2016. Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa. Asian Pac. J. Trop. Biomed. 6(8), 698–701.
 
38.
Vaquero J.M., Alberto M.R., Manca de Nadra M.C., 2007a. Antibacterial effect of phenolic compounds from different wines. Food Control 18, 93–101.
 
39.
Vaquero J.M., Alberto M.R., Manca de Nadra M.C., 2007b. Influence of phenolic compounds from wines on the growth of Listeria monocytogenes. Food Control 18, 587–593.
 
ISSN:0084-5477
Journals System - logo
Scroll to top