Mechanical fracture and microstructural parameters of alkali-activated materials with a ceramic precursor - The publication was submitted as part of the Central European Civil Engineering Meeting 2021 (CECEM 2021).
Więcej
Ukryj
1
Brno University of Technology
Data publikacji: 21-12-2021
Zeszyty Naukowe Politechniki Częstochowskiej seria Budownictwo 2021;27(1):118-140
SŁOWA KLUCZOWE
STRESZCZENIE
Four sets of alkali-activated aluminosilicate composites based on ceramic precursors were studied in terms
of their characterization by mechanical fracture and microstructural parameters. Composites made with
brick dust as a precursor and with alkaline activator variants of differing silicate modulus (Ms = 0.8, 1.0, 1.2,
1.4 and 1.6) were investigated. The filler used with first two sets of composites was quartz sand, while
in the case of the other two sets it was brick rubble; precursor particle size range variants: 0÷1 mm and
0÷0.3 mm. The test specimens had nominal dimensions of 40 × 40 × 160 mm and were provided with
notches at midspan after 28 days of hardening. The notches extended up to 1/3 of the height of the specimens,
which were subjected to three-point bending tests in which force vs. displacement diagrams were
recorded. Values were determined for the static modulus of elasticity, effective fracture toughness, effective
toughness and specific fracture energy using the Effective Crack Model and the Work-of-Fracture method.
At the same time, values were identified for the static modulus of elasticity, tensile strength and specific
fracture energy using the inverse method based on a neural network ensemble. The measured and identified
parameters are in very good agreement. The silicate modulus, type of filler and refinement of the precursor
significantly influenced the mechanical fracture parameters of the composites. The microstructure of
composites with a coarser precursor was also described.