Thermal decomposition characterization of supergene potassium-jarosite and sodium-jarosite minerals from the northern Tibetan Plateau, China
 
 
 
More details
Hide details
1
MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
 
 
Corresponding author
Lei Chen   

MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, NO.26 Baiwanzhuang Street, 115-117, 100037 Beijing, China
 
 
Physicochem. Probl. Miner. Process. 2018;54(2):459-466
 
KEYWORDS
TOPICS
ABSTRACT
The thermal decomposition of supergene potassium-jarosite and sodium-jarosite samples from the weathering profiles of sulfide deposits in the northern Tibetan Plateau, China, was investigated. Electron microprobe, scanning electron microscopy, and X-ray diffraction analyses indicated the presence of nearly pure potassium-jarosite and sodium-jarosite. Thermogravimetric analysis of the potassium-jarosite sample revealed mass losses of 11.39 wt% at 443.0 °C, 20.99 wt% at 688.3 °C, and 3.18 wt% at 779.3 °C. The thermogravimetric analysis of sodium-jarosite revealed mass losses of 11.72 wt% at 447.5 °C, 21.32 wt% at 682.6 °C, and 3.70 wt% at 716.5 °C. The results provide no evidence for water-molecule loss below 400 °C, as has been reported previously for natural potassium-jarosite and sodium-jarosite. Thermal-decomposition mechanisms have been proposed for potassium-jarosite and sodium-jarosite based on X-ray diffraction analyses of samples obtained at distinct points along the respective thermal decomposition processes. A comparison of the thermal analysis patterns of potassium-jarosite and sodium-jarosite indicates that sodium-jarosite undergoes the initiation of lattice destruction at a higher temperature.
 
REFERENCES (17)
1.
ALPERS C. N., BRIMHALL G. H., 1989, Paleohydrologic evolution and geochemical dynamics of cumulative supergene metal enrichment at La Escondida, Atacama Desert, northern Chile, Econ. Geol. 84, 229–255.
 
2.
CHEN L, 2012, Mineralogy, geochemistry and 40Ar/39Ar geochronology of supergene minerals from typical sulfide deposits, NE Tibetan Plateau, PhD thesis China University of Geosciences, Wuhan, 180.
 
3.
CHEN L, LI J, 2014, 40Ar/39Ar ages and stable isotopes of supergene jarosite from the Baiyin VHMS ore field, NE Tibetan Plateau with paleoclimatic implications, Chinese Sci. Bull. 59, 2999-3009.
 
4.
CHEN L, LI J, RYE R O, BENZEL W M, LOWERS H A, HE M, 2013, Mineralogical, chemical, and crystallographic properties of supergene jarosite-group minerals from the Xitieshan Pb-Zn sulfide deposit, northern Tibetan Plateau, China, Miner. Petrol. 107, 487-499.
 
5.
DESBOROUGH G. A., SMITH K. S., LOWERS H. A., SWAYZE G. A., HAMMARSTROM J. M., DIEHL S. F., LEINZ R. W., DRISCOLL R. L., 2010, Mineralogical and chemical characteristics of some natural jarosites, Geochim. Cosmochim. Ac. 74, 1041–1056.
 
6.
DROUET C., NAVROTSKY A., 2003, Synthesis, characterization, and thermochemistry of K-Na-H3O jarosites, Geochim. Cosmochim. Ac. 67, 2063–2076.
 
7.
DUTRIZAC J. E., JAMBOR J. L., 2000, Jarosites and their application in hydrometallurgy, Rev. Mineral. Geochem. 40, 405–452.
 
8.
FROST R. L., WEIER M. L., MARTENS W., 2005, Thermal decomposition of jarosites of potassium, sodium and lead, J. Therm. Anal. Calorim. 82, 115–118.
 
9.
FROST R. L., WILLS R. A., KLOPROGGE J. T., MARTENS W. N., 2006, Thermal decomposition of hydronium jarosite (H3O)Fe3(SO4)2(OH)6, J. Therm. Anal. Calorim. 83, 213–218.
 
10.
JAMBOR J. L., 1999, Nomenclature of the alunite supergroup, Can. Mineral. 37, 1323–1341.
 
11.
KUBISZ J., 1971, Studies on Synthetic alkali-hydronium jarosites. II. Thermal investigations, Mineralogia Polonica 2, 51–66.
 
12.
KULP J. L., ADLER H. H., 1950, Thermal study of jarosite, Am. J. Sci. 248, 475–487.
 
13.
NIELSEN U. G., MAJZLAN J., PHILLIPS B., ZILIOX M., GREY C. P., 2007, Characterization of defects and the local structure in natural and synthetic alunite (K, Na, H3O)Al3(SO4)2(OH)6 by multi-nuclear solid-state NMR spectroscopy, Am. Mineral. 92, 587–597.
 
14.
RYE R. O., ALPERS C. N., 1997, The stable isotope geochemistry of jarosite, U.S. Geol. Surv. Open-File Rep 88–97.
 
15.
RYE R. O., BETHKE P. M., LANPHERE M. A., STEVEN T. A., 2000, Neogene geomorphic and climatic evolution of the central San Juan Mountains, Colorado: K/Ar age and stable isotope data on supergene alunite and jarosite from the Creede mining district, Geological Society of America Special Papers 346, 95–103.
 
16.
SCOTT K. M., 1987, Solid solution in, and classification of, gossan-derived members of the alunite-jarosite family, Northwest Queensland, Australia, Am. Mineral. 72, 178–187.
 
17.
STOFFREGEN R. E., ALPERS C. N., JAMBOR J. L., 2000, Alunite-Jarosite crystallography, thermodynamics, and geochronology, Rev. Mineral. Geochem. 40, 453–479.
 
eISSN:2084-4735
ISSN:1643-1049
Journals System - logo
Scroll to top