Selective transport of copper(II) ions across polymer inclusion membrane with aromatic β–diketones as carriers
More details
Hide details
Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences in Bydgoszcz,
Faculty of Chemical Technology and Engineering, UTP University of Sciences and Technology, Seminaryjna 3, PL-85326 Bydgoszcz, Poland
Corresponding author
Elżbieta Radzymińska-Lenarcik   

Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences in Bydgoszcz,, Seminaryjna 3, 85-326 Bydgoszcz, Poland
Physicochem. Probl. Miner. Process. 2018;54(3):741-750
The transport of Cu(II) ions from an equimolar mixture of Co(II), Ni(II), and Cu(II) ions as well as from solutions containing only Cu(II) ions in the feed phase through polymer inclusion membranes (PIMs) with aromatic β–diketones as carriers has been investigated. The polymer membranes consisted of polyvinylchloride (PVC) as the support, bis(2-ethylhexyl)adipate (ADO) as plasticizer, and aromatic β–diketones (benzoylacetone (1) and dibenzoylmethane (2)) as ion carriers. The transport selectivity of PIMs with 1 and 2 was: Cu(II) > Co(II) > Ni(II). The highest recovery factors of Cu(II) ions were observed for 1 (94.0%), whereas for Co(II) and Ni(II) the factors were 21.4 and 7.3%, respectively. The Cu(II)/Co(II) and Cu(II)/Ni(II) selectivity coefficients were equal to 8.9 and 33.7 (for 1), 6.4 and 28.3 (for 2), respectively.
ALGUACIL, F.J., COBO, A., 1998a. Extraction of zinc from ammoniacal/ammonium sulphate solutions by LIX 54, J. Chem. Technol. Biotechnol. 71(2), 162-166.
ALGUACIL, F.J., COBO, A., 1998b. Solvent extraction equilibrium of nickel with LIX 54, Hydrometallurgy 48(3), 291-299.
ALMEIDA, M.I.G.S., CATTRALL, R.W., KOLEV, S.D., 2012. Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs), J. Membr. Sci. 415–416, 9-23.
ANNANE, K., SAHMOUNE, A., MONTELS, P., TINGRY, S., 2015. Polymer inclusion membrane extraction of cadmium(II) with Aliquat 336 in micro-channel cell, Chem. Eng. Res. Des. 94, 605-610.
BACZYNSKA, M., REGEL-ROSOCKA, M., WIŚNIEWSKI, M., 2013. Zastosowanie polimerowych membran inkluzyjnych w procesie transportu jonów metali, Przem. Chem. 92, 928-935.
BACZYNSKA, M., REGEL-ROSOCKA, M., COLL, M.T., FORTUNY, A., SASTRE, A.M., WIŚNIEWSKI, M., 2016a. Transport of Zn(II), Fe(II), Fe(III) across polymer inclusion membrane (PIM) and flat sheet supported liquid membranes (SLM) containing phosphonium ionic liquids as metal ion carriers, Sep. Sci. Technol. 51(15-16), 2639-2648.
BACZYNSKA, M., RZELEWSKA, M., REGEL-ROSOCKA, M., WISNIEWSKI, M., 2016b. Transport of iron ions from chloride solutions using cellulose triacetate matrix inclusion membranes with an ionic liquid carrier, Chem. Pap. 70(2): 172-179.
BARTSCH, R.A., WAY, J.D., 1996. Chemical Separations with Liquid Membranes, ACS Symposium Series Volume 642, Amer. Chem. Soc., Washington, DC, 422.
BERMEJO, J.C., ALONSO, M., SASTRE, A.M., ALGUACIL, F.J., 2000. Solvent extraction of Cu(II) by LIX 54-100 and its application to a solid supported liquid membrane system, J. Chem. Res. 10, 479-481.
BLITZ-RAITH, A.H., PAIMIN, R., CATTRALL, R.W., KOLEV, S.D., 2007. Separation of cobalt(II) from nickel(II) by solid-phase extraction into Aliquat 336 chloride immobilized in polyvinylchloride, Talanta 71, 419-423.
COTE, G., 2000. Hydrometallurgy of Strategic Metals, Solv. Extr. Ion Exch. 18(4), 703-727.
DANESI, P.R., 1984-85. Separation of metal species by supported liquid membranes, Sep. Sci. Technol. 19, 857-894.
DE GYVES, J., HERNÁNDEZ-ANDALUZ, A.M., DE SAN MIGUEL, E.R., 2006. LIX®-loaded polymer inclusion membrane for copper(II) transport: 2. Optimization of the efficiency factors (permeability, selectivity, and stability) for LIX® 84-I, J. Membr. Sci. 268, 142-149.
DZIWINSKI, E., SZYMANOWSKI, J., 1996. Composition of copper extractant LIX 54-100, Solvent Extr. Ion Exch. 14, 219-226.
GHERASIM, C.V.I., BOURCEANU, G., OLARIU, R.I., ARSENE, C., 2011. Removal of lead(II) from aqueous solutions by a polyvinyl-chloride inclusion membrane without added plasticizer, J. Membr. Sci. 377, 167-174.
GOTFRYD, L., PIETEK, G., 2013. Contaminants of post-leaching copper solutions and their behavior during extraction with industrial extractants, Physicochem. Probl. Miner. Process. 49, 133-143.
KAVITHA, N., PALANIVELU, K., 2012. Recovery of copper(II) through polymer inclusion membrane with di(2-ethylhexyl) phosphoric acid as carrier from e-waste, J. Membr. Sci. 415-416, 663-669.
KOZLOWSKI, C., GIREK, T., WALKOWIAK, W., KOZIOL J.J., 2005. Application of hydrophobic β-cyclodextrin polymer in separation of metal ions by plasticized membranes, Sep. Purif. Technol. 46, 136-144.
KYUCHOUKOV, G., BOGACKI, M.B., SZYMANOWSKI, J., 1998. Copper extraction from ammoniacal solutions with LIX 84 and LIX 54, Ind. Eng. Chem. Res. 37, 4084-4089.
LIS, S., PAWLICKI, G., STANISZEWSKI, B., URBANIAK, W., WITT, K., 2011. Complexation studies of 3-substituted β-diketones with selected d- and f-metal ions, Chem. Pap. 65(2), 221-225.
MIYAKE, Y., OHTSUKI, K., TERAMOTO, M., 1990. Effect of alkyl chain length of 3-alkylpentane-2,4-dione on the extraction of copper, Solvent Extr. Ion Exch. 8, 799-815.
NGHIEM, L.D., MORNANE, P., POTTER, I.D., PERERA, J.M., CATTRALL, R.W., KOLEV, S.D., 2006. Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs), J. Membr. Sci. 281, 7-41.
PETERSON, J., NGHIEM, L.D., 2010. Selective extraction of cadmium by polymer inclusion membranes containing PVC and Aliquat 336: role base polymer and extractant, Int. J. Environ. Tech. Manage. 12, 359-368.
POSPIECH, B., 2013. Hydrometallurgical recovery of cobalt(II) from acidic chloride solutions by transport through polymer inclusion membranes, Physicochem. Probl. Miner. Process. 49(2), 641-649.
PROCHASKA K., CIERPISZEWSKI R., SZYMANOWSKI J., UHLEMANN E., MICKLER W., 1995. Rate of copper extraction and interfacial activity of model β–diketones, Solvent Extr. Ion Exch. 13, 215-227.
RADZYMINSKA-LENARCIK, E., SULEWSKI, M., URBANIAK W., 2015a. Recovery of zinc from metallurgic waste sludges, Pol. J. Environ. Stud. 24, 1277-1282.
RADZYMINSKA-LENARCIK, E., ULEWICZ M., 2015b. The use of the steric effect of the carrier molecule in the polymer inclusion membranes for the separation of cobalt(II), nickel(II), copper(II), and zinc(II) ions, Pol. J. Chem. Technol. 17, 51-56.
RADZYMINSKA-LENARCIK, E., ULEWICZ M., 2017. Application of polymer inclusion and membranes supported with 1-alkyl-2-methylimidazoles for separation of selected transition metal ions, Desalin. Water Treat. 64, 425-431.
REGEL-ROSOCKA, M., ALGUACIL F.J., 2013. Recent trends in metals extraction, Rev. Metal. 49(4), 292-316.
SGARLATA, C., ARENA, G., LONGO, E., ZHANG, D., YANG, Y., BARTSCH, R.A., 2008. Heavy metal separation with polymer inclusion membranes, J. Membr. Sci. 323, 444-451.
STANISZEWSKI, B., URBANIAK, W., 2009. A simple and efficient synthesis of 3-substituted derivatives of pentane-2,4-dione, Chem. Pap. 63(2), 212-216.
SZYCZEWSKI, P., SIEPAK, J., NIEDZIELSKI, P., SOBCZYŃSKI, T., 2009. Research on heavy metals in Poland, Pol. J. Environ. Stud. 18, 755-768.
ULEWICZ, M., RADZYMINSKA-LENARCIK E., 2012a. Supported liquid (SLM) and polymer inclusion (PIM) membranes pertraction of copper(II) from aqueous nitrate solutions by 1-hexyl-2-methylimidazole, Sep. Sci. Technol. 47(9), 1383-1389.
ULEWICZ, M., RADZYMINSKA-LENARCIK, E., 2012b. Application of supported and polymer membrane with 1-decyl-2-methylimidazole for separation of transition metal ions, Physicochem. Probl. Miner. Process. 48, 91-102.
ULEWICZ, M., RADZYMINSKA-LENARCIK E., 2015. Application of polymer inclusion membranes doped with 1-hexyl-4-methylimidazole for pertraction of zinc(II) and other transition metal ions, Physicochem. Probl. Miner. Process. 51(2), 447-460.
ULEWICZ, M., SADOWSKA, K., BIERNAT, J. F., 2007. Selective transport of Pb(II) across polymer inclusion membrane using imidazole azocrown ethers as carriers, Physicochem. Probl. Miner. Process. 41, 133-143.
UPITIS, A., PETERSON, J., LUKEY, CH., NGHIEM, L.D., 2009. Metallic ion extraction using polymer inclusion membranes (PIMs): Optimizing physical strength and extraction rate, Desalin. Water Treat. 6, 41-47.
WALKOWIAK, W., BARTSCH, R.A., KOZLOWSKI, C., GEGA, J., CHAREWICZ, W., AMIRI-ELIASI, B., 2000. Separation and removal of metal ionic species by polymer inclusion membranes, J. Radioanal. Nucl. Chem. 246, 643-650.
WANG, L., SHEN, W., 2005. Chemical and morphological stability of Aliquat 336/PVC membranes in membrane extraction: A preliminary study, Sep. Purif. Technol. 46, 51-62.
WEJMAN-GIBAS, K., PILSNIAK-RABIEGA, M., OCHROMOWICZ, K., 2017. Solvent extraction of zinc(II) from ammonia leaching solution by LIX 54-100, LIX 84 and TOA, Physicochem. Probl. Miner.Process. 53, 202-211.
WIECZOREK, P.P., 2007. Liquid membranes as a useful method for separation and purification of mixtures, Przem. Chem. 86, 996-1000.
WITT, K., RADZYMINSKA-LENARCIK, E., URBANIAK, W., 2016. Selective transport of zinc Ions through a novel polymer inclusion membranes (PIMs) containing β-diketone derivatives as carrier reagents, Sep. Sci. Technol. 51, 2620-2627.
VAN UITERT, L. G., FERNELIUS, W. C., DOUGLAS, B. E. 1953a. Studies of coordination compounds. V. The effects of salt anion and of solvent upon the chelation of β-diketones, J. Am. Chem. Soc. 75, 2739-2741.
VAN UITERT L. G., FERNELIUS W. C., DOUGLAS B. E. 1953b. Studies of coordination compounds. III. The chelating tendencies of beta-diketones with chlorides of copper(II), nickel and barium in water-dioxane solutions, J. Am. Chem. Soc. 75, 457-460.
XU, J., WANG, L., SHEN, W., PAIMIN, R., WANG, X., 2004. The influence of the interior structure of Aliquat 336/PVC membranes to their extraction behavior, Sep. Sci. Technol. 39(15), 3527-3539.
Journals System - logo
Scroll to top