Comparison of mechanical flotation cell and cyclonic microbubble flotation column in terms of separation performance for fine graphite
,
 
,
 
,
 
,
 
 
 
 
More details
Hide details
1
Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining & Technology, Xuzhou 221116, China
 
2
School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou 221116, China
 
3
Bakuang Coal Preparation Plant, Pingdingshan Shenma Group Coal Industry Co., Ltd, Pingdingshan 467000, China
 
 
Corresponding author
Xiangning Bu   

Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining & Technology, Xuzhou 221116, China
 
 
Physicochem. Probl. Miner. Process. 2018;54(3):732-740
 
KEYWORDS
TOPICS
ABSTRACT
Comparison of flotation performance between the flotation column and mechanical flotation was carried out to promote the grade and economic value of the graphite ore (15.40% ash content). The ash content of the concentrate of the mechanical flotation was 10.77% at the yield of 79.34%. In contrast, the yield of the concentrate of the column flotation was increased to 88.93% with 10.55% ash content. Comparative study of the Fuerstenau upgrading curves indicated that the column flotation was more efficient for cleaning the graphite ore in the presence of the centrifugal force field, nanobubbles (generated by hydrodynamic cavitation), and the thicker froth layer in comparison with the mechanical flotation.
 
REFERENCES (45)
1.
ABD EL-RAHIEM, F.H., 2004. Application of Column Flotation for Egyptian Graphite. Tenside Surfactants Detergents, 41 (3), 104-108.
 
2.
ACHARYA, B.C., RAO, D.S., PRAKASH, S., REDDY, P.S.R., BISWAL, S.K., 1996. Processing of low grade graphite ores of orissa, India. Minerals Engineering, 9 (9), 1165-1169.
 
3.
AKDEMIR, Ü., SÖNMEZ, İ., 2003. Investigation of coal and ash recovery and entrainment in flotation. Fuel Processing Technology, 82 (1), 1-9.
 
4.
ATA, S., AHMED, N., JAMESON, G.J., 2004. The effect of hydrophobicity on the drainage of gangue minerals in flotation froths. Minerals Engineering, 17 (7), 897-901.
 
5.
BU, X., EVANS, G., XIE, G., PENG, Y., ZHANG, Z., NI, C., GE, L., 2017a. Removal of fine quartz from coal-series kaolin by flotation. Applied Clay Science, 143, 437-444.
 
6.
BU, X., XIE, G., CHEN, Y., NI, C., 2016a. The order of kinetic models in coal fines flotation. International Journal of Coal Preparation & Utilization, 37 (3), 113-123.
 
7.
BU, X., XIE, G., PENG, Y., CHEN, Y., 2016b. Kinetic modeling and optimization of flotation process in a cyclonic microbubble flotation column using composite central design methodology. International Journal of Mineral Processing, 157, 175-183.
 
8.
BU, X., ZHANG, T., CHEN, Y., XIE, G., PENG, Y., 2017b. Comparative study of conventional cell and cyclonic microbubble flotation column for upgrading a difficult-to-float China coking coal using statistical evaluation. International Journal of Coal Preparation and Utilization, 10.1080/19392699.2017.1359577.
 
9.
CALGAROTO, S., AZEVEDO, A., RUBIO, J., 2015. Flotation of quartz particles assisted by nanobubbles. International Journal of Mineral Processing, 137, 64-70.
 
10.
CHELGANI, S.C., RUDOLPH, M., KRATZSCH, R., SANDMANN, D., GUTZMER, J., 2015. A review of graphite beneficiation techniques. Mineral Processing & Extractive Metallurgy Review, 37 (1), 58-68.
 
11.
DOBBY, G.S., FINCH, J.A., 1991. Column flotation: A selected review, part II. Minerals Engineering, 4 (7–11), 911-923.
 
12.
DRZYMALA, J., 2005. Evaluation and comparison of separation performance for varying feed composition and scattered separation results. International Journal of Mineral Processing, 75 (3–4), 189-196.
 
13.
DRZYMALA, J., AHMED, H.A.M., 2005. Mathematical equations for approximation of separation results using the Fuerstenau upgrading curves. International Journal of Mineral Processing, 76 (1–2), 55-65.
 
14.
DRZYMALA, J., KAPUSNIAK, J., TOMASIK, P., 2003. Removal of lead minerals from copper industrial flotation concentrates by xanthate flotation in the presence of dextrin. International Journal of Mineral Processing, 70 (70), 147-155.
 
15.
DRZYMALA, J., KOWALCZUK, P.B., OTENG-PEPRAH, M., FOSZCZ, D., MUSZER, A., HENC, T., LUSZCZKIEWICZ, A., 2013. Application of the grade-recovery curve in the batch flotation of Polish copper ore. Minerals Engineering, 49, 17-23.
 
16.
DRZYMALA, J., LUSZCZKIEWICZ, A., FOSZCZ, D., 2010. Application of Upgrading Curves for Evaluation of Past, Present, and Future Performance of a Separation Plant. Mineral Processing & Extractive Metallurgy Review, 31 (31), 165-175.
 
17.
FAN, M., TAO, D., HONAKER, R., LUO, Z.,, 2010. Nanobubble generation and its application in froth flotation (part I): nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions. International Journal of Mining Science and Technology, 20 (1), 1-19.
 
18.
FUERSTENAU, D.W. (1978) Reports of Investigations. University of California, Berkeley.
 
19.
HARRIS, G.H., JIA, R., 2000. An improved class of flotation frothers. International Journal of Mineral Processing, 58 (1-4), 35-43.
 
20.
JIA, R., HARRIS, G.H., FUERSTENAU, D.W., 2002. Chemical Reagents for Enhanced Coal Flotation. Coal Preparation, 22 (3), 123-149.
 
21.
JIN, M., XIE, G., XIA, W., PENG, Y., 2016. Flotation Optimization of Ultrafine Microcrystalline Graphite Using a Box-Behnken Design. International Journal of Coal Preparation and Utilization, 10.1080/19392699.2016.1252338.
 
22.
JOGLEKAR, A.M., MAY, A.T., 1987. Product excellence through design of experiments. Cereal Foods World, 32, 857-868.
 
23.
LI, B., TAO, D., OU, Z., LIU, J., 2003. Cyclo-microbubble column flotation of fine coal. Separation Science and Technology, 38 (5), 1125-1140.
 
24.
LI, G., CAO, Y., LIU, J., WANG, D., 2012. Cyclonic flotation column of siliceous phosphate ore. International Journal of Mineral Processing, 110-111, 6-11.
 
25.
LI, H., FENG, Q., YANG, S., OU, L., LU, Y., 2014. The entrainment behaviour of sericite in microcrystalline graphite flotation. International Journal of Mineral Processing, 127, 1-9.
 
26.
LI, H.Q., OU, L.M., FENG, Q.M., CHANG, Z.Y., 2015. Recovery Mechanisms of Sericite in Microcrystalline Graphite Flotation. Physicochemical Problems of Mineral Processing, 51 (2), 387-400.
 
27.
LI, X., XU, H., LIU, J., ZHANG, J., LI, J., GUI, Z., 2016. Cyclonic state micro-bubble flotation column in oil-in-water emulsion separation. Separation & Purification Technology, 165, 101-106.
 
28.
LI, Y., ZHAO, W., GUI, X., ZHANG, X., 2013. Flotation kinetics and separation selectivity of coal size fractions. Fizykochemiczne Problemy Mineralurgii - Physicochemical Problems of Mineral Processing, 49 (2), 387-395.
 
29.
LU, X.J., FORSSBERG, E., 2001. Flotation selectivity and upgrading of Woxna fine graphite concentrate. Minerals Engineering, 14 (11), 1541-1543.
 
30.
MILLER, J.D., CAMP, M.C.V. (1982) Fine coal flotation in a centrifugal field with an air sparged hydrocyclone. In Mining Engineering. Littleton, Colorado, United States, SME/AIME. pp 1575-1580.
 
31.
MILLER, J.D., HALBE, D., 2005. Air-sparged hydrocyclone (ASH) technology for cyanide recovery. Minerals & Metallurgical Processing, 22 (3), 135-139.
 
32.
MISRA, V.N. (2003) Recent Advances in Mineral Processing Technologies. In Role of Chemical Engineering in Processing of Minerals and Materials. Eds J.N. MOHANTY, S.K. BISWAL, P. SITA RAMA REDDY, V.N. MISRA. Bhubaneswar, India, Allied Publishers. pp 58-70.
 
33.
NGUYEN, A.V., SCHULZE, H.J. (2004) Colloidal Science of Flotation. New York, Marcel Dekker.
 
34.
RAHMAN, A., AHMAD, K.D., MAHMOUD, A., FAN, M., 2014. Nano-microbubble flotation of fine and ultrafine chalcopyrite particles. International Journal of Mining Science and Technology, 24 (4), 559-566.
 
35.
SHI, Q., LIANG, X., FENG, Q., CHEN, Y., WU, B., 2015. The relationship between the stability of emulsified diesel and flotation of graphite. Minerals Engineering, 78, 89-92.
 
36.
TAO, Y., LIU, J., YU, S., TAO, D., 2006. Picobubble Enhanced Fine Coal Flotation. Separation Science & Technology, 41 (16), 3597-3607.
 
37.
TILS, H.M.G.C., TELS, M., 1992. A study into fine particle flotation separation characteristics with application to centrifugal force field flotation cells. International Journal of Mineral Processing, 36 (3–4), 201-217.
 
38.
VASUMATHI, N., VIJAYA KUMAR, T.V., RATCHAMBIGAI, S., SUBBA RAO, S., BHASKAR RAJU, G., 2015. Flotation studies on low grade graphite ore from eastern India. International Journal of Mining Science and Technology, 25 (3), 415-420.
 
39.
WAKAMATSU, T., NUMATA, Y., 1991. Flotation of graphite. Minerals Engineering, 4 (7-11), 975-982.
 
40.
YALAMANCHILI, M.R., MILLER, J.D., 1995. Removal of insoluble slimes from potash ore by air-sparged hydrocyclone flotation. Minerals Engineering, 8 (1-2), 169-177.
 
41.
YIANATOS, J.B., ESPINOSA-GOMEZ, R., FINCH, J.A., LAPLANTE, A.R., DOBBY, G.S., 1988. Effect of column height on flotation column performance. Minerals & Metallurgical Processing, 5 (1), 11-14.
 
42.
ZARUDZKA, E., 2009. Pre-flotation leaching of Polish carbonate copper ore. Physicochemical Problems of Mineral Processing, 43 (22), 85-92.
 
43.
ZHANG, H., LIU, J., WANG, Y., CAO, Y., MA, Z., LI, X., 2013. Cyclonic-static micro-bubble flotation column. Minerals Engineering, 45 (5), 1-3.
 
44.
ZHOU, W., OU, L., SHI, Q., CHEN, H., 2016. Aggregation of ultra-fine scheelite particles induced by hydrodynamic cavitation. International Journal of Mineral Processing, 157, 236-240.
 
45.
ZHOU, X.H., LIU, J.T., 2007. Particle Residence Time in Column Flotation Based on Cyclonic Separation. International Journal of Mining Science and Technology, 17 (3), 349-353.
 
eISSN:2084-4735
ISSN:1643-1049
Journals System - logo
Scroll to top