College of Resource and Civil Engineering, Northeastern University, Shenyang 110819, China
2
2011 Collaborative Innovation Centre of Steel Technology, Northeastern University, Shenyang 110819, China
3
Liaoning Technology and Engineering Laboratory of Effective Exploitation of Refractory Iron Ores, Shenyang 110819, China
Corresponding author
Xiaotian Gu
College of Resource and Civil Engineering, Northeastern University, Shenyang 110819, China, College of Resource and Civil Engineering, Northeastern University, 110819 Shenyang, China
A novel and highly-efficient amino-acid-based collector, α-ethylenediamine lauric acid (α-EDA-LA), was studied to selectively beneficiate carbonate-containing refractory hematite ores. Single mineral and synthetic mixture flotation tests were carried out to investigate its floating performance. Zeta potential, fourier transform infrared spectroscopy (FTIR) and Density Functional Theory-based molecular simulation were used to identify the adsorption mechanism. The flotation results showed that quartz could be collected effectively at pH 11.0-12.0 in the reverse flotation. For siderite, the recovery peaked at 83.4% at pH 8.0, where siderite presented different floatability from magnetite and hematite. Exploiting such difference, the separation of siderite could be achieved. Zeta-potential measurements showed that α-EDA-LA adsorption on the surfaces of siderite and quartz decreased the corresponding zeta potentials at pH of 8.0-10.0 and 8.0-12.0, respectively. This means the adsorption overcome the electrostatic repulsion between α-EDA-LA and the mineral surfaces. The molecular simulation indicated that no chemisorption took place between α-EDA-LA and quartz. FTIR analysis suggested that α-EDA-LA was adsorbed on quartz via hydrogen bonding. The adsorption of α-EDA-LA on siderite surface was dominated by chemisorption, while further enhanced by hydrogen bonding. This study filled the gap in the research on siderite flotation reagents and its adsorption mechanism.
REFERENCES(30)
1.
AHMED, I., JHUNG, S.H., 2017. Applications of metal-organic frameworks in adsorption / separation processes via hydrogen bonding interactions. Chem. Eng. J. 310, 197–215.
CHERNYSHOVA, I.V., RAO, K.H., VIDYADHAR, A., 2000. Mechanism of adsorption of long-chain alkylamines on silicates: A spectroscopic study. 1. Quartz. Langmuir 16, 8071–8084.
GAO, Y.S., GAO, Z.Y., SUN, W., HU, Y.H., 2016a. Selective flotation of scheelite from calcite: A novel reagent scheme, International Journal of Mineral Processing, 2016, 154,10-15.
GAO, Y.S., GAO, Z.Y., SUN, W., YIN, Z.G., WANG, J.J., HU Y.H.,2018. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation. J. Colloid Interface Sci. 512, 39-46.
MOHAMMADNEJAD, S., PROVIS, J.L., VAN DEVENTER, J.S.J., 2013. Effects of grinding on the preg-robbing potential of quartz in an acidic chloride medium. Miner. Eng. 52, 31-37.
SAHOO, H., RATH, S.S., DAS, B., MISHRA, B.K., 2016. Flotation of quartz using ionic liquid collectors with different functional groups and varying chain lengths. Miner. Eng. 95, 107–112.
SCHRAN, C., MARSALEK, O., MARKLAND, T.E., 2017. Unravelling the influence of quantum proton delocalization on electronic charge transfer through the hydrogen bond. Chem. Phys. Letters 678, 289-295.
SEO, J., HOFFMANN, W., MALERZ, S., WARNKE, S., BOWERS, M., PAGEL, J., HELDEN, G., 2017. Side-chain effects on the structures of protonated amino acid dimers: A gas-phase infrared spectroscopy study. Int. J. Mass Spectrom., http://dx.doi.org/10.1016/j.ij....
SONG, B.Y., YUAN, L.B., WEI, S.M., 2015. Investigation on stepped flotation process for carbonate-containing hematite and production practice. Min. and Metall. Eng. 35, 63-67.
TIAN, M., GAO, Z., HAN, H., SUN, W., HU, Y., 2017. Improved flotation separation of cassiterite from calcite using a mixture of lead (II) ion / benzohydroxamic acid as collector and carboxymethyl cellulose as depressant. Miner. Eng. 113, 68-70.
VIDYADHAR, A., RAO, K.H., CHERNYSHOVA, I.V., 2003. Mechanisms of amine/feldspar interaction in the absence and presence of alcohols studied by spectroscopic methods. Colloid Surf. A: Physicochem. Eng. Asp. 214, 127–142.
VIDYADHAR, A., RAO, K.H., CHERNYSHOVA, I.V., PRADIP, FORSSBERG, K.S.E., 2002. Mechanisms of amine–quartz interaction in the absence and presence of alcohols studied by spectroscopic methods. J. Colloid Interface Sci. 256, 59–72.
WANG, D.H., LUO, X.M., YIN, W.Z., MA, Y.Q., 2016. Research on influence of siderite on flotation of hematite and its mechanism. Non-ferr. Met. – Miner. Process. Section 3, 59-62 & 71.
YIN, W.Z., HAN, Y.X., XIE, F., 2010. Two-step flotation recovery of iron concentrate from Donganshan carbonaceous iron ore. J. Cent. South Univ. Technol. 17, 750-754.
ZHU, Y.M., CHEN, J.X., REN, J.L., WANG, T.X., 2014. Stepped Flotation of Donganshan Mixed Iron Magnetic Concentrate at Normal Temperature Using a New Collector DTX-1. Met. Mine 457, 61-64.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.