In this research, the kinetics and mechanism of one-step reductive leaching of manganese oxide ores by ethylenediaminetetraacetic acid (EDTA) or its disodium salt (EDTA-2Na) in an aqueous medium have been investigated. The kinetic data of this reductive leaching process may be described by the Avrami model, and the apparent activation energy was determined to be 15.8 kJ·mol-1/7.9 kJ·mol-1 for leaching by EDTA/EDTA-2Na with a reaction order of -1.7/2.0. The EDTA/EDTA-2Na leach liquor characterized and analyzed by X-ray photoelectron spectra (XPS), Fourier transform infrared spectra (FTIR), and total organic carbon (TOC) determination denoted that the oxidation-reduction reaction happened between manganese(IV) and EDTA/EDTA-2Na, and a coordination complex, EDTA-manganese(II/III) formed. This new process can be easily used to leach manganese from manganese oxide ores in a moderate environment with the pH range of 5–8.
REFERENCES(38)
1.
ALAOUI, A., KACEMI, K.E., ASS, K.E., DARMANE, Y.KITANE, S., 2016. Kinetic study of the leaching of manganese mine tailings by organic reductant in sulphuric acid solution. Miner. Process. Extr. M. IMM T., 125(2): 109-116.
ATZEI, D., FILIPPO, D.D., ROSSI, A.CAMINITI, R., 1993. X-ray photoelectron spectra of dinitrogen chelating ligands with some transition metals. Spectrochim. Acta A, 49(12): 1779-1785.
CHOUDHURY, V.N., 1994. Chemical Phase Analysis Proceedings of the Workshop on Modern Methods of Analysis for Minerals Metals and Pollutants, Jamshedpur.
FOORD, J.S., JACKMAN, R.B.ALLEN, G.C., 1984. An X-ray photoelectron spectroscopic investigation of the oxidation of manganese. Philos. Mag. A, 49(5): 657-663.
FUJIWARA, M., MATSUSHITA, T.IKEDA, S., 1995. Evaluation of Mn3s X-ray photoelectron spectroscopy for characterization of manganese complexes. J. Electron Spectrosc, 74(3): 201-206.
GHISELLI, G., JARDIM, W.F., LITTER, M.I.MANSILLA, H.D., 2004. Destruction of EDTA using Fenton and photo-Fenton-like reactions under UV-A irradiation. J. Photoch. Photobio. A, 167(1): 59-67.
GUO, X.Y., ZHAN, W.U., DONG, L.I., SHI, W.T.TIAN, Q.H., 2011. Atmospheric leaching of nickel laterite by hydrochloride acid and its kinetics. Min. Metall. Eng. (Chinese), 31(4): 69-4.
KABAI, J., 1973. Determination of specific activation energies of metal oxides and metal oxide hydrates by measurement of the rate of dissolution. Acta Chim. Acad. Sci. Hung., 78: 57-73.
KAI, T., SUENAGA, Y.I., MIGITA, A.TAKAHASHI, T., 2000. Kinetic model for simultaneous leaching of zinc sulfide and manganese dioxide in the presence of iron-oxidizing bacteria. Chem. Eng. Sci., 55(17): 3429-3436.
KANUNGO, S.B., 1999. Rate process of the reduction leaching of manganese nodules in dilute HCl in presence of pyrite : Part I. Dissolution behavior of iron and sulphur species during leaching. Hydrometallurgy, 52(3): 313-330.
KOCOT, P., KAROCKI, A.STASICKA, Z., 2006. Photochemistry of the Fe(III)–EDTA complexes : A mechanistic study. J. Photoch. Photobio. A, 179(1–2): 176-183.
KURSUNOGLU, S.KAYA, M., 2013. Recovery of Manganese from Spent Batteries Using Guar Meal as a Reducing Agent in a Sulfuric Acid Medium. Ind. Eng. Chem. Res., 52(50): 18076-18084.
KURSUNOGLU, S.KAYA, M., 2014. Dissolution and precipitation of zinc and manganese obtained from spent zinc-carbon and alkaline battery powder. Physicochem. Probl. MI, 50(1): 41-55.
MURRAY, J.W., DILLARD, J.G., GIOVANOLI, R., MOERS, H.STUMM, W., 1985. Oxidation of Mn(II): Initial mineralogy, oxidation state and ageing. Geochim. Cosmochim. Ac, 49(2): 463-470.
PAGNANELLI, F., FURLANI, G., VALENTINI, P., VEGLI , F.TORO, L., 2004. Leaching of low-grade manganese ores by using nitric acid and glucose: optimization of the operating conditions. Hydrometallurgy, 75(1): 157-167.
SAHOO, R.N., NAIK, P.K.DAS, S.C., 2001. Leaching of manganese from low-grade manganese ore using oxalic acid as reductant in sulphuric acid solution. Hydrometallurgy, 62(3): 157-163.
VEGLI , F., TRIFONI, M.TORO, L., 2001. Leaching of Manganiferous Ores by Glucose in a Sulfuric Acid Solution: Kinetic Modeling and Related Statistical Analysis. Ind. Eng. Chem. Res., 40(18): 3895-3901.
ZHANG, H.B. (Ed.), 1992. The Chemical Phase Analysis of Ores and Industrial Products. Non-ferrous Metals Industry Analysis Series, 9. Metallurgical Industry Press, Beijing, 376 pp.
ZHANG, X., LIU, Z., WU, X., DU, J.TAO, C., 2017. Electric field enhancement in leaching of manganese from low-grade manganese dioxide ore: Kinetics and mechanism study. J. Electroanal. Chem., 788: 165-174.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.