PL EN
EVALUATION OF THE EFFECTIVENESS OF AGRO-SORB FOLIUM AND ITS MIXTURES WITH FUNGICIDES IN THE PROTECTION OF ROSES AGAINST POWDERY MILDEW
 
More details
Hide details
1
Research Institute of Horticulture in Skierniewice, Department of Phytopathology
 
 
Publication date: 2021-06-28
 
 
2019;(598):63-74
 
KEYWORDS
ABSTRACT
The study evaluated the effectiveness of the Agro-Sorb Folium plant growth stimulant and Domark 100 EC and Discus 500 WG fungicides used individually or in a mixture for spraying 4–6 times ‘Aga’ rose bushes grown in a greenhouse in the protection against powdery mildew (Podosphaera pannosa). Agro-Sorb Folium used at a concentration of 1% in a mixture with the fungicide Domark 100 EC at concentrations of 0.01%, 0.02%, 0.03%, 0.04% and 0.05%, showed, after four spray treatments, an efficacy of 93.2–100% depending on fungicide concentration. After spraying six times, Agro-Sorb Folium in a mixture with the same fungicide, depending on its concentration, showed an efficacy of 88–97.8%. By comparison, after forth spray treatments, Agro-Sorb Folium used at a concentration of 1% in a mixture with the fungicide Discus 500 WG at concentrations of 0.012%, 0.024% and 0.03% showed an efficacy of 96–100%. After spraying six times, Agro-Sorb Folium in a mixture with the same fungicide in the tested concentrations showed an efficacy of 93.2–96%. As the concentration of the fungicides increased, the effectiveness of the tested mixture also increased. The study showed the possibility of lowering the concentrations of the fungicides by up to 80% by using them in a mixture with Agro-Sorb Folium at a concentration of 1%, while maintaining, or even increasing, their efficacy compared to individual use. Agro-Sorb Folium at a concentration of 1% used in a mixture with the fungicides, depending on their concentration, caused an increase in fresh weight of 11.3–23.8%, compared to control plants. There were no symptoms of phytotoxicity on rose bushes after using the tested agents and their mixtures.
 
REFERENCES (33)
1.
Abbott W.S., 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265–267.
 
2.
Amoucha Y.S., Cohen Y., 1988. Synergism in fungicide mixtures against Pseudoperonospora cubensis. Phytoparasitica 16(4), 337–342.
 
3.
Andel O.M. van, 1966. Amino acids and plant diseases. Annu. Rev. Phytopathol. 4, 349–368.
 
4.
Bosch F. van den, Paveley N., Berg F. van den, Hobbelen P., Oliver R., 2014. Mixtures as a fungicide resistance management tactic. Phytopathology 104(12), 1264–1273.
 
5.
Cohen Y., Levy Y., 1990. Joint action of fungicides in Mixtures: Theory and practice. Phytoparasitica 18(2), 159–169.
 
6.
Couch H.B., Smith B.D., 1991. Synergistic and antagonistic interactions of fungicides against Pythium aphanidermatum on perennial ryegrass. Crop Prot. 10, 386–390.
 
7.
De Waard M., 1996. Synergism and antagonism in fungicide mixtures containing sterol demethylation inhibitors. Phytopathology 86(11), 1280–1283.
 
8.
Emery K.M., Scherm H., Savelle A.T., 2002. Assessment of interactions between components of fungicide mixtures against Monilinia fructicola. Crop Prot. 21(1), 41–47.
 
9.
Gałązka A., 2013. Przemiany związków fenolowych a rola amoniakoliazy L-fenyloalaninowej (PAL) w indukcji mechanizmów obronnych rośliny [Conversion of phenolic compounds and the role of L-phenylalanine ammonia lyase (PAL) in the induction of plant defense mechanisms]. Pol. J. Agron. 15, 83–88.
 
10.
Gisi U., 1996. Synergistic interaction of fungicides in mixtures. Phytopathology 86(11), 1273–1279.
 
11.
Gisi U., Binder H., Rimbach E., 1985. Synergistic interactions of fungicides with different modes of action. Trans. Br. Mycol. Soc. 85, 299–306.
 
12.
Grabski C., Gisi U., 1985. Mixtures of fungicides with synergistic interactions for protection against phenylamise resistance in Phytophthora. British Crop Protection Conference Monographs 31, 315–318.
 
13.
Grabski C., Gisi U., 1987. Quantification of synergistic interactions of fungicides against Plasmopara and Phytophthora. Crop Prot. 6, 64–71.
 
14.
Hasabi V., Askari H., Alavi S.M., Zamanizadeh H., 2014. Effect of amino acid application on induced resistance against citrus canker disease in lime plants. J. Plant Protect. Res. 54(2), 144–149.
 
15.
Hobbelen P.H.F., Paveley N.D., Bosch F. van den, 2011. Delaying Selection for Fungicide Insensitivity by Mixing Fungicides at a Low and High Risk of Resistance Development: A Modeling Analysis. Phytopathology 101(10), 1224–1233.
 
16.
Hobbelen P.H.F., Paveley N.D., Oliver R.P., Bosch F. van den, 2013. The Usefulness of Fungicide Mixtures and Alternation for Delaying the Selection for Resistance in Populations of Mycosphaerella graminicola on Winter Wheat: A Modeling Analysis. Phytopathology 103(7), 690–707.
 
17.
Holb I.J., Schnabel G., 2007. The benefits of combining elemental sulfur with a DMI fungicide to control Monilinia fructicola isolates resistant to propiconazole. Pest Manag. Sci. 64(2), 156–164.
 
18.
Köller W., Wilcox W.F., 2000. Interactive Effects of Dodine and the DMI Fungicide Fenarimol in the Control of Apple Scab. Plant Disease 84(8), 863–880.
 
19.
Lalancette N., Hickey K.D., Cole H. Jr., 1987. Effects of mixtures of benomyl and mancozeb on build-up of benomyl-resistant Venturia inaequalis. Phytopathology 77, 86–91.
 
20.
Mavroeidi V.I., Shaw M., 2006. Effects of fungicide dose and mixtures on selection for triazole resistance in Mycosphaerella graminicola under field conditions. Plant Pathol. 55, 715–725.
 
21.
Mikaberidze A., Bruce A., McDonald B.A., Bonhoeffer S., 2014. Can High-Risk Fungicides be Used in Mixtures Without Selecting for Fungicide Resistance? Phytopathology 104(4), 324–331.
 
22.
Pruszyński S., Wachowiak M., Stobiecki S., 2013. Dobra Praktyka Ochrony Roślin. Zasady mieszania i łącznego stosowania agrochemikaliów. Poradnik dla doradców. Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Poznań. Retrieved from: https://www.agrofagi.com.pl/pl....
 
23.
Rae D.J., 2002. Use of spray oils with synthetic insecticides, acaricides and fungicides. In: G.A.C. Beattie et al. (Eds.), Spray oils – beyond 2000. University of Western Sydney, Sydney, 248–284.
 
24.
Samoucha Y., Gisi U., 1987. Use of two- and three-way mixtures to prevent build-up of resistance to phenylamide fungicides in Phytophthora and Plasmopara. Phtopathology 77, 1405–1409.
 
25.
Scardavi A., 1966. Synergism among fungicides. Annu. Rev. Phytopathol. 4, 335–348.
 
26.
Shaw M.W., 1993. Theoretical analysis of the effect of interacting activities on the rate of selection for combined resistance to fungicide mixtures. Crop Prot. 12(2), 120–126.
 
27.
Wojdyła A.T., 2016. Możliwość wykorzystania naturalnych i syntetycznych produktów w ochronie róży przed Podosphaera pannosa. ZPPNR 586, 89–98.
 
28.
Wojdyła A.T., 2017a. Możliwość wykorzystania środków zawierających aminokwasy w ochronie róż przed Podosphaera pannosa oraz ich wpływ na rozwój roślin. Prog. Plant Prot. 57, 82–87.
 
29.
Wojdyła A.T., 2017b. Możliwość wykorzystania nawozu mocznikowo-triazonowego (TRI-N) w mieszaninie z fungicydem Domark 100 EC w ochronie róży przed Podosphaera pannosa (Wall.: Fr.) de Bary. Zesz. Nauk. Inst. Ogrod. 25, 165–174.
 
30.
Wojdyła A.T., 2018a. Potential of using products containing amino acids in the protection of garden pansy (Viola wittrockiana) against pansy leaf anthracnose (Colletotrichum violae-tricoloris) and their impact on plant growth. Prog. Plant Prot. 58(2), 107–114.
 
31.
Wojdyła A.T., 2018b. Możliwość wykorzystania fungicydów w ochronie róż przed patogenami nalistnymi. ZPPNR 593, 113–123.
 
32.
Wojdyła A.T., Łazęcka U.W., 2014. Ochrona róż przed Diplocarpon rosae mieszaniną fungicydów z olejami. Zesz. Nauk. Inst. Ogrod. 22, 157–166.
 
33.
Wojdyła A.T., Sobolewski J., 2016. Możliwość wykorzystania środków zawierających aminokwasy w ochronie fasoli przed zgnilizną twardzikową. Zesz. Nauk. Inst. Ogrod. 24, 131–140.
 
ISSN:0084-5477
Journals System - logo
Scroll to top