Kinetics and mechanism of one-step reductive leaching of manganese oxide ores by EDTA/EDTA-2Na
More details
Hide details
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, Hunan, China
Hong Zhong   

Central South University, College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China
Physicochem. Probl. Miner. Process. 2018;54(3):858–867
In this research, the kinetics and mechanism of one-step reductive leaching of manganese oxide ores by ethylenediaminetetraacetic acid (EDTA) or its disodium salt (EDTA-2Na) in an aqueous medium have been investigated. The kinetic data of this reductive leaching process may be described by the Avrami model, and the apparent activation energy was determined to be 15.8 kJ·mol-1/7.9 kJ·mol-1 for leaching by EDTA/EDTA-2Na with a reaction order of -1.7/2.0. The EDTA/EDTA-2Na leach liquor characterized and analyzed by X-ray photoelectron spectra (XPS), Fourier transform infrared spectra (FTIR), and total organic carbon (TOC) determination denoted that the oxidation-reduction reaction happened between manganese(IV) and EDTA/EDTA-2Na, and a coordination complex, EDTA-manganese(II/III) formed. This new process can be easily used to leach manganese from manganese oxide ores in a moderate environment with the pH range of 5–8.
ALAOUI, A., KACEMI, K.E., ASS, K.E., DARMANE, Y.KITANE, S., 2016. Kinetic study of the leaching of manganese mine tailings by organic reductant in sulphuric acid solution. Miner. Process. Extr. M. IMM T., 125(2): 109-116.
ATZEI, D., FILIPPO, D.D., ROSSI, A.CAMINITI, R., 1993. X-ray photoelectron spectra of dinitrogen chelating ligands with some transition metals. Spectrochim. Acta A, 49(12): 1779-1785.
AVRAMI, M., 1939. Kinetics of phase change. I General theory. J. Chem. Phys., 7(12): 1103-1112.
CASTRO, V.D.POLZONETTI, G., 1989. XPS study of MnO oxidation. J. Electron Spectrosc, 48(1): 117-123.
CHOUDHURY, V.N., 1994. Chemical Phase Analysis Proceedings of the Workshop on Modern Methods of Analysis for Minerals Metals and Pollutants, Jamshedpur.
CHRISTIAN, J.W., 2002. The Theory of Reaction Rates, The Theory of Transformations in Metals and Alloys. Pergamon, Oxford, pp. 79-94.
FANG, Z., 2007. Leaching. Metallurgical Industry Press, Beijing, 487 pp.
FOORD, J.S., JACKMAN, R.B.ALLEN, G.C., 1984. An X-ray photoelectron spectroscopic investigation of the oxidation of manganese. Philos. Mag. A, 49(5): 657-663.
FUJIWARA, M., MATSUSHITA, T.IKEDA, S., 1995. Evaluation of Mn3s X-ray photoelectron spectroscopy for characterization of manganese complexes. J. Electron Spectrosc, 74(3): 201-206.
GHISELLI, G., JARDIM, W.F., LITTER, M.I.MANSILLA, H.D., 2004. Destruction of EDTA using Fenton and photo-Fenton-like reactions under UV-A irradiation. J. Photoch. Photobio. A, 167(1): 59-67.
GUO, X.Y., ZHAN, W.U., DONG, L.I., SHI, W.T.TIAN, Q.H., 2011. Atmospheric leaching of nickel laterite by hydrochloride acid and its kinetics. Min. Metall. Eng. (Chinese), 31(4): 69-4.
HABASHI, F., 1970. General Principles, Principles of Extractive Metallurgy.
JIANG, T., YANG, Y., HUANG, Z., ZHANG, B.QIU, G., 2004. Leaching kinetics of pyrolusite from manganese–silver ores in the presence of hydrogen peroxide. Hydrometallurgy, 72(1–2): 129-138.
KABAI, J., 1973. Determination of specific activation energies of metal oxides and metal oxide hydrates by measurement of the rate of dissolution. Acta Chim. Acad. Sci. Hung., 78: 57-73.
KAI, T., SUENAGA, Y.I., MIGITA, A.TAKAHASHI, T., 2000. Kinetic model for simultaneous leaching of zinc sulfide and manganese dioxide in the presence of iron-oxidizing bacteria. Chem. Eng. Sci., 55(17): 3429-3436.
KANUNGO, S.B., 1999. Rate process of the reduction leaching of manganese nodules in dilute HCl in presence of pyrite : Part I. Dissolution behavior of iron and sulphur species during leaching. Hydrometallurgy, 52(3): 313-330.
KOCOT, P., KAROCKI, A.STASICKA, Z., 2006. Photochemistry of the Fe(III)–EDTA complexes : A mechanistic study. J. Photoch. Photobio. A, 179(1–2): 176-183.
KURSUNOGLU, S.KAYA, M., 2013. Recovery of Manganese from Spent Batteries Using Guar Meal as a Reducing Agent in a Sulfuric Acid Medium. Ind. Eng. Chem. Res., 52(50): 18076-18084.
KURSUNOGLU, S.KAYA, M., 2014. Dissolution and precipitation of zinc and manganese obtained from spent zinc-carbon and alkaline battery powder. Physicochem. Probl. MI, 50(1): 41-55.
LASHEEN, T.A., HAZEK, M.N.E.HELAL, A.S., 2009. Kinetics of reductive leaching of manganese oxide ore with molasses in nitric acid solution. Hydrometallurgy, 98(3–4): 314-317.
LEVENSPIEL, O., 1999. Chemical Reaction Engineering, third ed. John Wiley & Sons, New York.
LI, L., FAN, E., GUAN, Y., ZHANG, X., XUE, Q., WEI, L., WU, F.CHEN, R., 2017. Sustainable Recovery of Cathode Materials from Spent Lithium-Ion Batteries Using Lactic Acid Leaching System. ACS Sustain. Chem. Eng., 5(6).
MURRAY, J.W., DILLARD, J.G., GIOVANOLI, R., MOERS, H.STUMM, W., 1985. Oxidation of Mn(II): Initial mineralogy, oxidation state and ageing. Geochim. Cosmochim. Ac, 49(2): 463-470.
OKU, M., HIROKAWA, K.IKEDA, S., 1975. X-ray photoelectron spectroscopy of manganese—oxygen systems. J. Electron Spectrosc, 7(5): 465-473.
PAGNANELLI, F., FURLANI, G., VALENTINI, P., VEGLI , F.TORO, L., 2004. Leaching of low-grade manganese ores by using nitric acid and glucose: optimization of the operating conditions. Hydrometallurgy, 75(1): 157-167.
PAKALAPATI, S.N.R., POPOV, B.N.WHITE, R.E., 1996. Anodic oxidation of ethylenediaminetetraacetic acid on platinum electrode in alkaline medium. J. Electrochem. Soc., 143(5): 1636-1643.
RAY, H.S., 1993. Kinetics of Metallurgical Reactions. Oxford & IBH Publishing Company, India.
SAHOO, R.N., NAIK, P.K.DAS, S.C., 2001. Leaching of manganese from low-grade manganese ore using oxalic acid as reductant in sulphuric acid solution. Hydrometallurgy, 62(3): 157-163.
SCHROEDER, K.A.HAMM, R.E., 1964. Decomposition of the ethylenediaminetetraacetate complex of manganese(III). Inorg. Chem., 3(3): 391-395.
SENANAYAKE, G., DAS, G.K., LANGE, A.D., LI, J.ROBINSON, D.J., 2015. Reductive atmospheric acid leaching of lateritic smectite/nontronite ores in H2SO4/Cu(II)/SO2 solutions. Hydrometallurgy, 152: 44-54.
SOCRATES, G., 2001. Infrared and Raman Characteristic Group Frequencies:  Tables and Charts. 3rd ed. J. Wiley and Sons, Chichester.
TIAN, X., WEN, X., YANG, C., LIANG, Y., PI, Z.WANG, Y., 2010. Reductive leaching of manganese from low-grade manganese dioxide ores using corncob as reductant in sulfuric acid solution. Hydrometallurgy, 100(3): 157-160.
VEGLI , F., TRIFONI, M.TORO, L., 2001. Leaching of Manganiferous Ores by Glucose in a Sulfuric Acid Solution:  Kinetic Modeling and Related Statistical Analysis. Ind. Eng. Chem. Res., 40(18): 3895-3901.
YOSHIDA, T.SAWADA, S., 1974. ChemInform Abstract: X‐ray photoelectron Spectroscopy of EDTA, Chemischer Informationsdienst.
YOSHINO, Y., OUCHI, A., TSUNODA, Y.KOJIMA, M., 1962. Manganese (III) complexes with ethylenediaminetetraacetic acid. Can. J. Chem., 40(4): 775-783.
ZHANG, H.B. (Ed.), 1992. The Chemical Phase Analysis of Ores and Industrial Products. Non-ferrous Metals Industry Analysis Series, 9. Metallurgical Industry Press, Beijing, 376 pp.
ZHANG, X., LIU, Z., WU, X., DU, J.TAO, C., 2017. Electric field enhancement in leaching of manganese from low-grade manganese dioxide ore: Kinetics and mechanism study. J. Electroanal. Chem., 788: 165-174.
ZHANG, Y., YOU, Z., LI, G.JIANG, T., 2013. Manganese extraction by sulfur-based reduction roasting–acid leaching from low-grade manganese oxide ores. Hydrometallurgy, 133(2): 126–132.