PL EN
DEPENDENCE BETWEEN THE ANTIMICROBIAL ACTIVITY AND THE MOLECULAR STRUCTURE OF PHENOLIC ACIDS AND THEIR SALTS WITH ALKALI METALS AS BIOLOGICALLY ACTIVE SUBSTANCES PRESENT IN THE NATURAL PRODUCTS
 
More details
Hide details
1
Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences
Publication date: 2021-07-20
 
2020;(601):25–36
 
KEYWORDS
ABSTRACT
This paper presents the dependence of antibacterial activity on the structure of phenolic acids as biologically active substances of natural origin. The biological activity of selected compounds was assessed by means of microbiological tests on selected strains of tested bacteria Staphylococcus aureus, Proteus vulgaris and Bacillus subtilis. Microbiological assays were correlated with spectroscopic data. The dependencies between the percentage growth inhibition of microorganisms under the influence of test compounds vs. values of the wavenumbers for individual bands present in the infrared spectra (FT-IR) of these compounds, were determined. These results suggest that the biological activity of the compounds depends on the electron density distribution both in the ring and the carboxylate anion. Therefore, the dependence structure-activity may be useful for predicting the biological properties of a series of novel synthetic compounds without the need for biological tests for each compound.
 
REFERENCES (21)
1.
Baer-Dubowska W., 2003. Chemoprewencja – profilaktyka i terapia wspomagana raków głowy i szyi. Postępy w Chirurgii głowy i Szyi 2, 3–14 [in Polish].
 
2.
Biswas D., Roymon M.g., 2008. The safety of Bacillus subtilis and Bacillus indicus as food Probiotics, J Appl Microbiol, 105, 510–520.
 
3.
Burt S., 2004. Essential oils: their antibacterial properties and potential applications in foods – a review. Int. J. Food. Microbiol 94, 223–253.
 
4.
De Flora S., 1998. Mechanisms of inhibitors of mutagenesis and carcinogenesis. Mutat Res. 402, 151–158.
 
5.
Denyera S.P., Stewart g.S.A.B., 1998. Mechanisms of action of disinfectants. Int Biodeter Biodegr. 41, 261–268.
 
6.
Duda G., Gertig H., 2007. Żywność a zdrowie i prawo. Wyd. Lek. PZWL, Warszawa [in Polish].
 
7.
Friedman M., Henika P.R., Mandrell R.E., 2003. Antibacterial activities of phenolic benzaldehydes lic benzaldehydes and benzoic acids against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes and Salmonella enterica. J. Food Protect 66, 1811–1821.
 
8.
Halon A., Patrzalek D., Rabczynski J., 2002. Critical overview of the current status of organ donors with primary central nervous system tumors. Ann Transplant. 7(1), 6–14.
 
9.
Howard J., Whitcombe D.M., 1995. Methods in Molecular Biology, Diagnostic Bacteriology Protocols. Humana Press Inc, Totowa, NJ, 46.
 
10.
Kowczyk-Sadowy M., Piekut J., Świsłocka R., Lewandowski W., 2012. Badania właściwości przeciwdrobnoustrojowych kwasu p-kumarowego i jego soli. Ochr. przed Koroz. 55, 9s/A, 326–330.
 
11.
Kowczyk-Sadowy M., Świsłocka R., Lewandowska H., Piekut J., Lewandowski W., 2015. Spectroscopic (FT-IR, FT-Raman, 1H- and 13C-NMR), theoretical and microbiological study of trans o-coumaric acid and alkali metal o-coumarates, Molecules 20, 3146–3169.
 
12.
Maiorella B., Blanch H.W., Wilke C.R., 1983. By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotech. Bioeng. 25, 103–121.
 
13.
Middleton T., Lim H.B., Montgomery D., Rockway T., Tang H., Cheng X., Lu L., Mo H., Kohlbrenner W.E., Molla A., Kati W.M., 2004. Inhibition of human immunodeficiency virus type I integrase by naphthamidines and 2-aminobenzimidazoles. Antiviral Res. 64, 35–45.
 
14.
Narendranath V.N., Thomas K.C., Ingledew W.M., 2001. Acetic acid and lactic acid inhibition of growth of Saccharomyces cerevisiae by different mechanisms. J Am Soc Brew Chem 59, 187–194.
 
15.
Panizzi L., Caponi C., Catalano S., Cion P.L., Morelli I., 2002. In vitro antimicrobial activity of extracts and isolated constituents of Rubus ulmifolius. J Ethnopharmacol 79, 165–168.
 
16.
Pennington J.A.T., 2002. Food composition databases for bioactive food components. J. Food Comp. Anal. 15, 419–434.
 
17.
Piekut J., Świsłocka R., Lewandowski W., 2012. Wpływ pochodnych kwasu benzoesowego na rozwój bakterii szczepu Staphyloccocus aureas. Badania zależności aktywności biologicznej od struktury molekularnej. Ochr. przed Koroz. 55, 9s/A, 352–357 [in Polish].
 
18.
Salameh D., Brandam C., Medawar W., Lteif R., Strehaiano P., 2008. Highlight on the problems generated by p-coumaric acid analysis in wine fermentations. Food Chem. 107, 1661–1667.
 
19.
Świsłocka R., Piekut J., Kowczyk-Sadowy M., Bajko E., Lewandowski W., 2012. Badania spektroskopowe i mikrobiologiczne kwasu 4-hydroksy-3,5-dimetoksybenzoesowego. [In:]. Nauka i przemysł: metody spektroskopowe w praktyce,nowe wyzwania i możliwości. Z. Hubicki (ed.). UMCS, Lublin, 274–280 [in Polish].
 
20.
Świsłocka R., 2013. Spectroscopic (FT-IR, FT-Raman, UV absorption, 1H and 13C NMR) and theoretical (in B3LYP/6-311++G** level) studies on alkali metal salts of caffeic acid. Spectrochim. Acta Part A, 100, 21–30.
 
21.
Świsłocka R.; Piekut J., Lewandowski W., 2013. The relationship between molecular structure and biological activity of alkali metal salts of vanillic acid: Spectroscopic, theoretical and microbiological studies. Spectrochim. Acta Part A, 100, 31–40.
 
ISSN:0084-5477