Cites 2016

Influence of chemical and biogenic leaching on surface area and particle size of laterite ore

Zygmunt Sadowski 1  ,  
Wroclaw University of Science and Technology
Physicochem. Probl. Miner. Process. 2017;53(2):869–877
Publish date: 2017-04-11
Currently there is a decline in the world’s nickel sulfide deposits, which are the main source of this metal. Due to the fact, that more than 70% of nickel reserves are in the form of oxide ores, more attention is nowadays paid on laterites. Leaching processes using different organic acids are widely described in the literature, but there is a lack of works linking influence of leaching process with the surface area and particle size distribution. Therefore, the main aim of this study was to examine how citric acid produced by microorganisms and citric acid added as chemical affected the specific surface and particle size distribution of mineral particles. The laterite ore was obtained from Szklary deposit, Poland. This study also compared the effect of chemical citric acid and filtrate after cultivation of Aspergillus niger on nickel extraction. It was observed that higher nickel recovery correspond to higher surface area of particles. The highest yield of nickel extraction was observed for a citric acid concentration of 1 mol/dm3 (67%). The specific surface area after leaching was 159 m2/g. An analysis of particle size distribution showed increase in the median particle size of particles after leaching with citric acid. It may suggest that dissolution of Polish laterites follows a shrinking core-shrinking particle model.
Zygmunt Sadowski   
Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
1. ALIBHAI K.A.K., DUDENEY A.W.L., LEAK D.J., AGATZINI S., TZEFERIS P., 1993. Bioleaching and bioprecipitation of nickel and iron from laterites. FEMS Microbiology Reviews, 11, 87–96.
2. BEHERA S.K., PANDA P.P., PRADHAN N., SUKLA L.B., MISHRA B.K., 2012. Extraction of nickel by microbial reduction of lateritic chromite overburden of Sukida, India. Bioresurce Technology, 125, 17-22.
3. BEHERA S. K., PANDA P. P., SAINI S. K., PRADHAN N., SUKLA L. B., MISHRA B. K., 2013. Recovery of nickel from chromite overburden, Sukinda using Aspergillus niger supplemented with manganese. Korean Journal of Chemical Engineering, 30(2), 392-399.
4. BOSECKER K., 1986. Leaching of lateritic nickel ores with heterotrophic microorganisms. In: R.W. Lawrence, R.M.R. Branion, H.G. Ebner (Ed.), Fundamental and Applied Biohydrometallurgy, Elsevier, Amsterdam, 367–382.
5. BURGSTALLER W., SCHINNER F., 1993. Leaching of metals with fungi. Journal of Biotechnology, 27, 91–116.
6. BURGHARDT A., BARTELMUS G., 2001. Inżynieria reaktorów chemicznych. Tom II Reaktory dla układów heterogenicznych. Wydawnictwo Naukowe PWN, Warszawa.
7. CASTRO I.M., FIETO J.L.R., VIEIRA R.X., TRÓPIA M.J.M., CAMPOS L.M.M., PANIAGO E.B., BRANDÃO R.L., 2000. Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures. Hydrometallurgy, 57, 39–49.
8. COTO O., BRUGUERA N., ABÍN L., GAMBOA J., GÓMEZ Y., 2001. Bioleaching of Cuban nickeliferrous serpentinite. W: V.S.T. Ciminelli, O. Garcia (Ed.), Biohydrometallurgy, Fundamentals, Technology and Sustainable Development, Part A, Elsevier, Amsterdam, 175–182.
9. COTO O., GALIZIA F., HERNÁNDEZ I., MARRERO J., DONATI E., 2008. Cobalt and nickel recoveries from laterite tailings by organic and inorganic bio-acids. Hydrometallurgy, 94, 18–22.
10. DALVI A.D., BACON W.G., OSBORNE R.C., 2004. The past and future of nickel laterites. PDAC 2004 International Convention, Trade Show & Investors Exchange.
11. du PLESSIS C.A., SLABBERT W., HALLBERG K.B., JOHANSON D.B., 2011. Ferredox: A biohydrometallurgical processing concept for limonitic nickel laterites, Hydrometallurgy, 109, 221-229.
12. ELIAS M., 2002. Nickel laterite deposits – geological overview, resources and exploitation. In: Cooke C.R., Pontgratz J., (Ed.), Giant Ore Deposits: Characteristics, Genesis and Exploitation. CODES Special Publication. Centre for Ore Deposit Research, University of Tasmania, 205-220.
13. GLEESON S.A., BUTT C.R.M., ELIAS M., 2003. Nickel laterites: review. Society of Economic Geologists (SEG) Newsletter, 54. Document on-line: www.segweb.org.
14. HALLBERG K.B., GRAIL B.M., du PLESSIS .A., JOHNSON D.B., 2011. Reductive dissolution of ferric iron minerals: A new approach for bio-processing nickel laterites. Minerals Engineering, 24, 620-624.
15. LEVENSPIEL O., 1999. Chemical Reaction Engineering, 3rd ed. John Wiley & Sons, New York.
16. LI G., RAO M., LI Q., PENG Z., JIANG T., 2010. Extraction of cobalt from laterite ores by citric acid in presence of ammonium bifluoride. Transactions of Nonferrous Metals Society of China, 20, 1517-1520.
17. MINISTRY OF ENVIRONMENT, 2001. Document on-line: ippc.mos.gov.pl/preview/pl/bref_met _nz.html.
18. MOHAPATRA S., BOHIDAR S., PRADHAN N., KAR R.N., SUKLA L.B., 2007. Microbial extraction of nickel from Sukinda chromite overburden by Acidithiobacillus ferrooxidans and Aspergillus strains. Hydrometallurgy, 85, 1–8.
19. MOSKALYK R. R., ALFANTAZI A. M., 2002. Nickel laterite processing and electrowinning practice. Minerals Engineering, 15, 593-605.
20. MULLIGAN C.N., BERNARD M.K., GIBBS F., 2004. Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger. Journal of Hazardous Materials, 110, 77–84.
21. PRADHAN N., DAS B., GAHAN S.G., KAR N.R., SUKLA B.L. 2006, Beneficiation of iron ore slime using Aspergillus niger and Bacillus circulans. Bioresource Technology, 97, 1876-1879.
22. SIMATE G.S., NDLOVU S., 2007. Characterisation of factors in the bacterial leaching of nickel laterites using statistical design of experiments. Advanced Materials Research, 20–21, 66–69.
23. SIMATE G.S., NDLOVU S., 2008. Bacterial leaching of nickel laterites using chemolithotrophic microorganisms: identifying influential factors using statistical design of experiments. International Journal of Mineral Processing, 88, 31–36.
24. SIMATE G.S., NDLOVU S., GERICKE M., 2009. Bacterial leaching of nickel laterites using chemolithotrophic microorganisms: process optimisation using response surface methodology and central composite rotatable design. Hydrometallurgy, 98, 241–246.
25. SZUBERT A., KORZEKWA W., GROTOWSKI A., 2007. Analiza bazy surowcowej oraz wytypowanie perspektywicznych surowców niklu: w ramach projektu PBZ-MNiSW-3/3/2006, pt.: Nowoczesne technologie oraz zaawansowane materiały i wyroby w zrównoważonym rozwoju przemysłu metali nieżelaznych, KGHM Cuprum sp. z o.o. Centrum Badawczo-Rozwojowe, Wrocław.
26. TANG J.A., VALIX M., 2006. Leaching of low grade limonite and nontronite ores by fungi metabolic acids. Minerals Engineering, 19, 1274–1279.
27. TZEFERIS P.G., 1994. Leaching of a low grade hematitic laterite ore using fungi and biologically produced acid metabolites. International Journal of Mineral Processing, 42, 267-283.
28. TZEFERIS P.G., AGATZINI-LEONARDOU S., 1994. Leaching of nickel and iron from Greek non-sulphide nickeliferous ores by organic acids. Hydrometallurgy, 36 (3), 345–360.
29. VALIX M., USAI F., MALIK R., 2001a. Fungal bioleaching of low grade laterite ores. Minerals Engineering, 14 (2), 197–203.
30. VALIX M., USAI F., MALIK R., 2001b. The electro-sorption properties of nickel on laterite gangue leached with an organic chelating acid. Minerals Engineering, 14 (2), 205-215.
31. WATLING H.R., 2008. The bioleaching of nickel-copper sulphides. Hydrometallurgy, 91, 70-88.