Functionalized Stober silica as a support in immobilization process of lipase from Candida Rugosa
More details
Hide details
Institute of Chemical Technology and Engineering
Publication date: 2017-04-11
Corresponding author
Agnieszka Kołodziejczak-Radzimska   

Institute of Chemical Technology and Engineering, Berdychowo 4, 60964 Poznan, Poland
Physicochem. Probl. Miner. Process. 2017;53(2):878–892
Lipase from Candida rugosa was immobilized onto modified Stober silica. Modification was made with 3-(2,3-epoxypropoxy)propyltrimethoxysilane and glutaraldehyde. The immobilization process by covalent binding was performed for 1 and 24 h using different concentrations of enzyme solution. The obtained immobilized biocatalysts were subjected to physicochemical characteristics. The characteristics of functional groups (FTIR, 13C CP MAS NMR), thermal stability (TG) and parameters of the porous structure (low temperature N2 sorption) were determined. An elemental analysis was performed to determine the content of nitrogen, carbon and hydrogen. Using a Bradford method the immobilization yield (IY) and amount (P) of lipase loaded onto support were calculated. The obtained systems were also tested to evaluate their catalytic activity in hydrolysis reaction of p-nitrophenyl palmitate (p-NPP) to p-nitrophenol (p-NP). The results confirmed the effectiveness of immobilization process and high hydrolytic activity (2270 U/g) of immobilized biocatalysts.
ABD-ELHAKEEM, M.A., ELSAYED, A.M., ALKHULAQI, T.A., 2013, New colorimetric method for lipases activity assay in microbial media, American J. Anal. Chem. 4, 442-444.
ADLERCREUTZ, P., 2013, Immobilization and application of lipase in organic media, Chem. Soc. Rev. 42, 6406-6436.
BANJANAC K., MIHAILOVIC M., PRLAINOVIC N., COROVIC M., CAREVIC M., MARINKOVIC A., BEZBRADICA D., 2016, Epoxy-silanization – Tool for improvement of silica nanoparticles as support for lipase immobilization with respect to esterification activity, J. Chem. Technol. Biotechnol. 91, 2654-2663.
BERNAL, C., SIERR, L., MESA, M., 2012, Immobilization of thermal stability of β-galactosiadase from bacillus circulans by multipoint covalent immobilization in hierarchical macro-mesoporous silica, J. Mol. Cat. B-Enzym. 84, 166-172.
BRADFORD, M. M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 7, 248-254.
CHONG, A.S.M., ZHAO, X.S., 2004, Design of large-pore mesoporous materials for immobilization of penicillin G acylase, Catal. Today 93, 293-299.
CIRIMINNA, R., FIDALGO, A., PANDARUS, V., BELAND, F., ILHARCO, L.M., PAGLIARO, M., 2013, The sol-gel route to advanced silica-based materials and recent applications, Chem. Rev. 113, 6592-6620.
DE BARDI, M., HUTTER, H., SCHREINER, M., BERTONCELLO, R., 2014, Sol–gel silica coating for potash–lime–silica stained glass: Applicability and protective effect, J. Non-Cryst. Solid. 390, 45-50.
ESQUENA, J., SOLANS, J., 2001, Phase changes during silica particle formation in water-in-oil emulsion, Colloid. Surface. A. 183-185, 533-540.
FAURE, N.E., HALING, P.J., WIMPERIS, S., 2014, A solid-state NMR study of the immobilization of α-chymptrypsin on mesoporous silica, J. Phys. Chem. 118, 1042-1048.
GAFFNEY, D., COONEY, J., MAGNER, E., 2012, Modification of mesoporous silicates for immobilization of enzymes, Top. Catal. 55, 1101-1106.
HASSAN, T.A., RANGARI, V.K., JEELANI, S., 2010, Sonochemical synthesis and rheological properties of shear thickening silica dispersions, Ultrason. Sonochem. 17, 947-952.
HORCHANI, H., BONAZIZ, A., GARGOURI, Y., SAYARI, A., 2012, Immobilized Staphylococus xylosus lipase-catalysed synthesis of ricinoleic acid esters, J. Mol. Cat. B-Enzym. 75, 35-42.
HOU, C., ZHU, H., WU, D., LI, Y., HOU, K., JIANG, Y., LI, Y., 2013, Immobilized lipase on macroporous polystyrene modified by PAMAM-dendrimer and their enzymatic hydrolysis, Process Biochem. 40, 244-249.
JANG, S., KIM, D., CHOI, J., ROW, K., AHN, W., 2006, Trypsin immobilisation on mesoporous silica with or without thiol functionalization, J. Porous Mat. 13, 385-391.
JESIONOWSKI, T., 2008, Synthesis and characterization of spherical silica precipitated via emulsion route, J. Mater. Process. Tech. 203, 121-128.
JESIONOWSKI, T., CIESIELCZYK, F., KRYSZTAFKIEWICZ, A., 2010, Influence of selected alkoxysilanes on dispersive properties and surface chemistry of spherical silica precipitated in emulsion media, Mater. Chem. Phys. 19, 65-74.
JESIONOWSKI, T., ZDARTA, J., KRAJEWSKA, B., 2014, Enzyme immobilization by adsorption: A review, Adsorption 20, 801-821.
JESIONOWSKI, T., ZURAWSKA, J., KRYSZTAFKIEWICZ, A., 2002, Surface properties and dispersion behavior of precipitated silicas, J. Mater. Sci. 37, 1621-1633.
JUNG, D., STERB, C., HARTMAN, M., 2010, Covalent anchoring of chloroperoxide and glucose oxidase on the mesoporous molecular sieve SBA-15, Int. J. Mol. Sci. 11, 762-778.
KAO, H.M., TSAI, Y.Y., CHAO, S.W., 2005, Functionalized mesoporous silica MCM-41 in poly(ethylene oxide)-based polymer electrolytes: NMR and conductivity studies, Solid State Ionics 176, 1261-1270.
KATCHALSKI-KATAZIR, E., KRAEMER, D. M., 2000, Eupergit®C, a carrier for immobilization of enzymes of industrial potential, J. Mol. Cat. B-Enzym. 10, 157-176.
KHOOBI, M., MOTEVALIZADEH, S.F., ASADGOL, Z., FOROOTANFAR, H., SHAFIEE, A., FARAMARZI, M.A., 2014, Synthesis of functionalizaed polyethylenimine-grafted mesoporous silica spheres and the effect of side arms on lipase immobilization and application, Biochem. Eng. J. 88, 131-141.
KLAPISZEWSKI L., KROLAK M., JESIONOWSKI, T., 2014, Silica synthesis by the sol-gel method and its use in the preparation of multifunctional biocomposites, Cent. Eur. J. Chem. 12, 173-184.
KNEZEVIC, Z., MILOSEVIC, N., BEZBRADICA, D., JAKOULJEVIC, Z., PRODANOVIC, R., 2006, Immobilization of lipase from Candida rugosa on Eupergit®C supports by covalent attachment, Biochem. Eng. J. 30, 269-278.
KRYSZTAFKIEWICZ, A., RAGER, B., JESIONOWSKI, T., 1997, The effect of surface modification on physicochemical properties of precipitated silica, J. Mater. Sci. 32, 1333-1339.
LI, Y., WANG, W., HAN, P., 2014, Immobilization of Candida sp.99-125 lipase onto silanized SBA-15 mesoporous materials by physical adsorption, Korean J. Chem. Eng. 31, 98-103.
MATTE, C.R., BUSSAMARA, R., DUPONT, J., RODRIGUES, R.C., HERTZ, P.F., ZACHIA, A.M. A., 2014, Immobilization of Thermomyces lanuginosus lipase by different techniques on Iimmobead 150 support: Characterization and applications, Appl. Biochem. Biotech. 172, 2507-2520.
MELENDEZ-ORTIZ, H.I., MERCADO-SILVA A., GARCÍA-CERDA L.A., CASTRUITA G., PERERA-MERCADO Y.A., 2013, Hydrothermal synthesis of mesoporous silica MCM-41 using commercial sodium silicate, J. Mex. Chem. Soc. 57, 73-79.
MOTEVALIZADEH, S.F., KOOBI, M., SHABANIAN, M., ASADGOL, Z., FARAMARZI, M.A., SHAFIEE, A., 2013, Polyacrolein/mesoporous silica nanocomposite: Synthesis, thermal stability and covalent lipase immobilization, Mater. Chem. Phys. 143, 76-84.
NANDY, S., KUNDU, D., NASKAR, M.K., 2014, Synthesis of mesoporous Stöber silica nanoparticles: The effect of secondary and tertiary alkanolamines, J. Sol-Gel Sci. Techn. 72, 49-55.
NGUYEN, A.T., PARK, C.W., KIM, S.H, 2014, Synthesis of hollow silica by Stober method with double polymers as templates. Bull. Korean Chem. Soc. 35, 173-176.
NETTO, C.G.C.M., TOMA, H.E., ANDRADE, L.H., 2013, Superparamagnetic nanoparticles as versatile carries and supporting materials for enzymes, J. Mol. Cat. B-Enzym. 85-86, 71-92.
POPPE, J.K., COSTA, A.P.O., BRASIL, M.C., RODRIGUES, R.C., AYUB, M.A.Z., 2013, Multipoint covalent immobilization of lipases on aldehyde-activated support: characterization and application in transesterification reaction, J. Mol. Cat. B-Enzym. 94, 57-62.
RODRIGUES, R.C., ORTIZ, C., BERENGUER-MURCIA, A., TORRESD, R., FERNANDEZ-LAFUENTE, R., 2013, Modifying enzyme activity and selectivity by immobilization, Chem. Soc. Rev. 42, 6290-6307.
STOBER, W., FINK, A., BOHN, E., 1968, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interf. Sci. 26, 62-69.
VEJAYAKUMARAN, P., RAHMAN, I.A., SIPAUT, C.S., ISMAIL, J., CHEE C.K, 2008, Structural and thermal characterizations of silica nanoparticles grafted with pendant maleimide and epoxide groups, J. Colloid Interf. Sci. 328, 81-91.
VETRIVEL, S., CHEN, C.T., KAO H.M., 2010, The ultrafast sonochemical synthesis of mesoporous silica MCM-41, New J. Chem. 34, 2109-2112.
VINU, A., MURUGESAN, V., TNAGERMANN, O., HARTMAN, M., 2004, Adsorption of cytochrome c on mesoporous molecular sieves: influence of pH, pore diameter, and aluminum incorporation, Chem. Mater. 16, 3056-3065.
WANG, C., LI, Y., ZHOU, G., JIANG, X., XU, Y., BU, Z., 2014, Improvement of the activation of lipase from Candida rugosa following physical and chemical immobilization on modified mesoporous silica, Mater. Sci. Eng. 45, 261-269.
WANG P.T.T., WANG, R.K., CAPUTO, T.A., GODWIN, T.A., RIGAS, B., 1991, Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis, P. Natl. Acad. Sci. 88, 10988-10992.
WHITAKER, J.R., 2003, Encyclopedia of food science and nutrition. Enzymes, Academic Press Elsevier Science Ltd., Oxford, United Kingdom.
YAN, H., WANG, L., ZHAO, M., 1997, Preparation of ultrafine SiO2 with high surface area by the chemical precipitation method, Mater. Sci. Eng. B-Adv. 48, 211-214.
YIU, H.H.P., WRIGHT, P.A., BOTTING, N.P., 2001, Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces, J. Mol. Cat. B-Enzym. 15, 81-92.
YU, Q., HUI, J., WANG, P., XU, B., ZHUANG, J., WANG, X., 2012, Hydrothermal synthesis of mesoporous silica spheres: Effect of the cooling process, Nanoscale 4, 7114-7120.
YU, W.H., TANG, D.S., FONG, M., SHAO, P., ZHOU, C.H., 2015, Immobilization of Candida rugosa lipase on MSU-H type mesoporous silica for selective esterification of conjugated linoleic acid isomers with ethanol, J. Mol. Cat. B-Enzym. 111, 43-50.
YUCE-DURSUN, B., CIGIL, A.B., DINGEZ, D., KAHRAMAN, M.V., OGAN, A., DEMIR, S., 2016, Preparation and characterization of sol-gel hybrid coating films for covalent immobilization of lipase enzyme, J. Mol. Cat. B-Enzym. 127, 18-25.
ZDARTA, J., KLAPISZEWSKI, L., WYSOKOWSKI M., NORMAN, M., KOLODZIEJCZAK-RADZIMSKA A., MOSZYNSKI D., EHRLICH H., MACIEJEWSKI H., STELLING A. L.., JESIONOWSKI, T., 2015, Chitin-lignin material as a novel matrix for enzyme immobilization, Mar. Drugs 13, 2424-2446.
ZDARTA, J., SALEK, K., KOLODZIEJCZAK-RADZIMSKA A., SIWINSKA-STEFANSKA K., SZWARC-RZEPKA, K., NORMAN, M., KLAPISZEWSKI, L., BARTCZAK, P., JESIONOWSKI, T., 2015, Immobilization of Amano Lipase A onto Stober silica surface: Process characterization and kinetic studies, Open Chem. 13, 138-148.
ZDARTA, J., WYSOKOWSKI M., NORMAN, M., KOLODZIEJCZAK-RADZIMSKA A., MOSZYNSKI D., EHRLICH H., MACIEJEWSKI H., JESIONOWSKI, T., 2016, Candida antarctica lipase B immobilized onto chitin conjugated with POSS compounds: useful tool for rapeseed oil conversion, Int. J. Mol. Sci. 17, 1581-1603.
ZHANG, X., GUAN, R.F., WU, D.Q., CHAN, K.Y., 2005, Enzyme immobilization on amino-functionalized mesostructured cellular foam surfaces, characterization and catalytic properties, J. Mol. Cat. B-Enzym. 33, 43-50.
ZNISZCZOŁ A., HERMAN A.P., SZYMANSKA K., MROWIEC-BIAŁON J., WALCZAK K.Z., JARZEBSKI A., BONCEL S., 2016, Covalently immobilized lipase on aminoalkyl-, carboxy- and hydroxy-multi-wall carbon nanotubes in the enantioselective synthesis of Solketal esters, Enzyme Microb. Technol. 87-88, 61-69.
ZUCCA, P., SANJUST, E., 2014, Inorganic materials as supports for covalent enzyme immobilization: method and mechanism, Molecules 19, 14139-14194.