Concentration of chromite by means of magnetic carrier using sodium oleate and other reagents
Yasar Ucbas 1,   Volkan Bozkurt 1  
,   Kemal Bilir 1,   Halil Ipek 1
 
More details
Hide details
1
Eskisehir Osmangazi University
CORRESPONDING AUTHOR
Volkan Bozkurt   

Eskisehir Osmangazi University, Faculty of Engineering and Architecture, Department of Mining Engineering, 26480, Eskisehir, Turkey
Publication date: 2014-01-06
 
Physicochem. Probl. Miner. Process. 2014;50(2):767–782
 
KEYWORDS
ABSTRACT
Chromite recovery was studied using a magnetic carrier technology. Heavy media grade magnetite was used as the magnetic carrier. The effect of various reagents such as sodium oleate (NaOl) as a collector and carboxymethyl cellulose (CMC) as well as quebracho tannin as depressants on chromite removal was investigated. The effects of pH and reagent dosages were also determined. First, the zeta potential measurements were performed for different minerals in the absence and presence of NaOl, and then magnetic carrier tests were carried out under conditions based on zeta potential measurements. The magnetic carrier tests performed in the case of individual minerals (i.e. single minerals) showed that chromite (recovery of 95.1%) could be separated from serpentine (recovery of 3.2%) whereas it could not be separated from olivine. The best chromite concentrates containing 42.1% Cr2O3 were obtained with a 76% recovery from a synthetic mixtures of chromite and serpentine under optimum test conditions, that is at pH 10.5, 5.10–5 M NaOl, 20 g/Mg CMC, 0.5 g magnetite and 500 g/Mg kerosene (the feed contained 27% Cr2O3). Slime tailings of Turkish Maadin Company, Kavak Chrome Concentrating Plant in Eskisehir, which contain fine chromite, serpentine and olivine, were also investigated. It was found that chromite could not be satisfactorily recovered from the original slime sample in the presence and absence of NaOl by using the magnetic carrier technology. Additional FTIR studies performed with the investigated minerals showed that NaOl adsorption on chromite was greater than that on serpentine and magnetite minerals. It was also found that NaOl adsorption on serpentine is significantly reduced in the presence of magnetite while it increases only slightly on chromite.
eISSN:2084-4735
ISSN:1643-1049