PL EN
WASTE FISH OIL AS AN ALTERNATIVE CARBON SOURCE IN MICROBIAL OIL PRODUCTION BY YARROWIA LIPOLYTICA YEAST
 
Więcej
Ukryj
1
WULS-SGGW, Institute of Food Sciences
2
Łukasiewicz Research Network - Institute of Industrial Organic Chemistry
Data publikacji online: 01-10-2019
 
2019;(599):3–13
 
SŁOWA KLUCZOWE
STRESZCZENIE
The development of many industries, including food industry, is inherently connected with the rise in the amount of industry waste and the emergence of problems in the areas of their utilization. Due to the rich enzyme apparatus, microorganisms are able to use atypical wastes as a source of carbon and energy with the simultaneous synthesis of valuable metabolites (valorization of waste substrates). A microorganisms characterized by peculiar properties of the use of hydrocarbons and fats is the lipolytic yeast species Yarrowia lipolytica. The aim of the study was to evaluate the potential to utilize the fish waste after the process of smoking fish oil as a source of carbon and a lipase inducer in Y. lipolytica KKP 379 yeast strain culture as well as to evaluate the potential of microbial oil synthesis with simultaneous valorization of this waste. The obtained results confirmed the ability of the yeast strain to hydrolyze triacylglycerols contained in the oil from the fish smoking process, whose products (free fatty acids) were taken up by the cell and used as a source of carbon and energy. Although the highest efficiency of intracellular lipid biosynthesis by yeast strain Y. lipolytica KKP 379 was observed in control mineral medium supplemented with 50 g·dm–3 olive oil, storage lipids were also produced in the medium with 5% waste fish oil in amount of 0.187 g per 1 g of dry biomass.
 
REFERENCJE (18)
1.
Ageitos J.M., Vallejo J.A., Veiga-Crespo P., Villa T.G., 2011. Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol. 90, 1219-1227.
 
2.
Bialy H.E., Gomaa O.M., Azab K.S., 2011. Conversion of oil waste to valuable fatty acids using Oleaginous yeast. World J Microbiol Biotechnol. 27, 2791-2798.
 
3.
Boguski A., 2008. Efektywność usuwania substancji tłuszczowych w układzie oczyszczania Ścieków miejskich. Rocznik Ochrona środowiska. 10, 481–489 [in Polish].
 
4.
Fabiszewska A., Mazurczak P., Pielińska A., Zieniuk B., Nowak D., Białecka-Florjańczyk E., 2014. Próba zastosowania drożdży Yarrowia lipolytica KKP 379 w zagospodarowaniu odpadów przemysłu rybnego. Postępy Techniki Przetwórstwa Spożywczego. 2, 28-33 [in Polish].
 
5.
Fabiszewska A., Pielińska A., Mazurczak P., Zieniuk B., Wołoszynowska M., 2017. Wpływ wybranych czynników na wydajność ekstrakcji i skład kwasów tłuszczowych otrzymywanego oleju mikrobiologicznego w komórkach droĪdĪy Yarrowia lipolytica. Żywność. Nauka. Technologia. Jakość. 24, 58-68 [in Polish].
 
6.
Fabiszewska A., Misiukiewicz-Stępień P., Paplińska-Goryca M., Zieniuk B., Białecka-Florjańczyk E., 2019. An insight into storage lipids synthesis by Yarrowia lipolytica yeast relating to lipid and sugar substrates metabolism. Biomol. 9, 685-697.
 
7.
Fickers P., Nicaud J.M., Gaillardin C., Destain J., Thonart P., 2004. Carbon and nitrogen sources modulate lipase production in the yeast Yarrowia lipolytica. J. Appl. Microbiol. 96, 742-749.
 
8.
Fickers P., Marty A., Nicaud J.-M., 2011. The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications. Biotech- nol. Adv. 29 (6): 632-644.
 
9.
Goncalves C., Lopes M., Ferreira J.P., Belo I., 2009. Biological treatment of olive mill wastewater by non-conventional yeasts. Bioresour. Technol. 100, 3759-3763.
 
10.
Kinoshita H., Ota Y., 2001. Concentration of docosahexaenoic acid from fish oils using Geotrichum sp. FO347-2. Biosci. Biotechnol. Biochem. 65, 1022-1026.
 
11.
Kapturowska A., Stolarzewicz I., Krzyczkowska J., Białecka-Florjańczyk E., 2012. Studies on lipolytic activity of sonicated enzymes from Yarrowia lipolytica. Ultrason. Sonochem. 19, 186-191.
 
12.
Krzyczkowska J., Fabiszewska A., 2015. Yarrowia lipolytica - niekonwencjonalne drożdże w biotechnologii. Post. Mikrobiol. 54, 33-43.
 
13.
Martinez E.J., Raghavan V., Gonzalez-Andres F., Gomez X., 2015. New biofuel alternatives: inte-grating waste managment and single cell oil production. Int. J. Mol. Sci. 16, 9385-9405.
 
14.
Mazurczak P., Zieniuk B., Fabiszewska A., Nowak D., Wołoszynowska M., Białecka-Florjańczyk E., 2017. Utylizacja odpadów pochodzących z zakładów przemysłu spożywczego i paliwowego z wykorzystaniem lipolitycznych drożdży Yarrowia lipolytica. Zeszyty Proble¬mowe Postępów Nauk Rolniczych 588, 15-24 [in Polish].
 
15.
Papanikolaou S., Aggelis G., 2011. Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. Eur. J. Lipid Sci. Technol. 113, 1031-1051.
 
16.
Stappen R.K., 2006. A Sustainable World is Possible. Der Wise Consensus: Problemlösungen für das 21 Jahrhundert. Impulsdokument Manuskript 1.2/2006.
 
17.
Szczęsna-Antczak M., Antczak T., Bielecki S., 2010. Sposób wytwarzania oleju mikrobiologiczne¬go. Patent nr PL 204911. Publication data: 26.02.2010.
 
18.
Yahyaee R., Ghobadian B., Najafi G., 2013. Waste fish oil biodiesel as a source of renewable fuel in Iran. Ren. Sust. En. Rev. 17, 312-319.
 
ISSN:0084-5477