PL EN
Alzheimer’s Disease as an Example of Desynchronization of Functioning and a Set of Neurocognitive Patterns Constituting a Potential Source of Resources for the Development of Artificial Intelligence
 
More details
Hide details
1
Centrum Badań Neuropoznawczych SWPS, Uniwersytet Humanistyczno-społeczny SWPS, Polska
 
 
Submission date: 2021-11-14
 
 
Final revision date: 2022-01-15
 
 
Acceptance date: 2022-01-17
 
 
Publication date: 2022-03-31
 
 
Corresponding author
Anna Aleksandra Kaszyńska   

Centrum Badań Neuropoznawczych SWPS, Uniwersytet Humanistyczno-Społeczny SWPS, ul. Chodakowska 19/31, 03-815, Warszawa, Polska
 
 
Studia Humanistyczne AGH 2022;21(1):23-47
 
KEYWORDS
TOPICS
ABSTRACT
The review article focuses on the potential development of Artificial Intelligence by extracting fixed patterns and regularities that enable the improvement and refinement of advanced analyses in the field of artificial neural network learning. Is conducted through the prism of the neurocognitive view of Alzheimer's disease as a potential set of neurocognitive patterns constituting a potential source of resources for the development of artificial intelligence. It is closely related to encephalography, both used to detect pathological dementia changes, and the analysis of brain activity itself, showing the existence of repeated regularities. These patterns, analogic in the astrophysical Lagrandrean mapping analysis of the galaxy, seem to have the potential to develop Artificial Intelligence. Especially, following the idea of ​​perceiving Alzheimer's disease as a global functional desynchronisation, global neurodegenerative changes may provide potential resources that, through mathematical and algebraic transformations, to serve as a foundation for the development of Artificial Intelligence.
 
REFERENCES (104)
1.
Abbassian, H., Whalley, B.J., Sheibani, V., Shabani, M. (2016). Cannabinoid type 1 receptor antagonism ameliorates harmaline-induced essential tremor in rat: Cannabinoids and essential tremor. British Journal of Pharmacology, 173(22), 3196–3207.
 
2.
Adrian, E.D., Matthews, B.H.C. (1934). The interpretation of potential waves in the cortex. The Journal of Physiology, 81(4), 440–471.
 
3.
Aggrawal, C. (2018). Neural Networks and Deep Learning. Switzerland: Springer.
 
4.
Agnoli, S., Zanon, M., Mastria, S., Avenanti, A., Corazza, G.E. (2020). Predicting response originality through brain activity: An analysis of changes in EEG alpha power during the generation of alternative ideas. NeuroImage, 207, 116385.
 
5.
Amini, M., Pedram, M.M., Moradi, A., Ouchani, M. (2021). Diagnosis of Alzheimer’s Disease by Time-Dependent Power Spectrum Descriptors and Convolutional Neural Network Using EEG Signal. Computational and Mathematical Methods in Medicine, 2, 1–17.
 
6.
Babiloni, C., Noce, G., Di Bonaventura, C., Lizio, R., Pascarelli, M.T., Tucci, F., Soricelli, A., Ferri, R., Nobili, F., Famà, F., Palma, E., Cifelli, P., Marizzoni, M., Stocchi, F., Frisoni, G.B., Del Percio, C. (2020). Abnormalities of Cortical Sources of Resting State Delta Electroencephalographic Rhythms Are Related to Epileptiform Activity in Patients with Amnesic Mild Cognitive Impairment Not Due to Alzheimer’s Disease. Frontiers in Neurology, 11, 514136.
 
7.
Baldwin, C.L., Roberts, D.M., Barragan, D., Lee, J.D., Lerner, N., Higgins, J.S. (2017). Detecting and Quantifying Mind Wandering during Simulated Driving. Frontiers in Human Neuroscience, 11, 406.
 
8.
Banhegyi, G., Baumeister, P., Benedetti, A., Dong, D., Fu, Y., Lee, A.S., Li, J., Mao, C., Margittai, E., Ni, M., Paschen, W., Piccirella, S., Senesi, S., Sitia, R., Wang, M., Yang, W. (2007). Endoplasmic Reticulum Stress. Annals of the New York Academy of Sciences, 1113(1), 58–71.
 
9.
Barthelson, K., Newman, M., Lardelli, M. (2021). Comparative analysis of Alzheimer’s disease knock-in model brain transcriptomes implies changes to energy metabolism as a causative pathogenic stress. bioRXIV. Neuroscience [praca niepublikowana].
 
10.
Benedek, M., Jauk, E., Sommer, M., Arendasy, M., Neubauer, A.C. (2014). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence, 46, 73–83.
 
11.
Benedek, M., Könen, T., Neubauer, A.C. (2012). Associative abilities underlying creativity. Psychology of Aesthetics, Creativity, and the Arts, 6, 273–281.
 
12.
Berman, J.I., Liu, S., Bloy, L., Blaskey, L., Roberts, T.P.L., Edgar, J.C. (2015). Alpha-toGamma Phase-Amplitude Coupling Methods and Application to Autism Spectrum Disorder. Brain Connectivity, 5, 80–90.
 
13.
Calabrese, E.J., Rubio-Casillas, A. (2018). Biphasic effects of THC in memory and cognition. European Journal of Clinical Investigation (EJCI), 48, 5, e12920, DOI: 10.1111/eci.12920.
 
14.
Cassani, R., Estarellas, M., San-Martin, R., Fraga, F.J., Falk, T.H. (2018). Systematic Review on Resting-State EEG for Alzheimer’s Disease Diagnosis and Progression Assessment. Disease Markers, 1–26, 5174815, DOI: 10.1155/2018/5174815.
 
15.
Cecchetti, G., Agosta, F., Basaia, S., Cividini, C., Cursi, M., Santangelo, R., Caso, F., Minicucci, F., Magnani, G., Filippi, M. (2021). Resting-state electroencephalographic biomarkers of Alzheimer’s disease. NeuroImage: Clinical, 31, 102711.
 
16.
Chaudhury, D., Liu, H., Han, M.-H. (2015). Neuronal correlates of depression. Cellular and Molecular Life Sciences, 72, 6, 4825–4848.
 
17.
Clay, F., Howett, D., FitzGerald, J., Fletcher, P., Chan, D., Price, A. (2020). Use of Immersive Virtual Reality in the Assessment and Treatment of Alzheimer’s Disease: A Systematic Review. Journal of Alzheimer’s Disease, 21, DOI: 10.3233/JAD-191218 .
 
18.
Compton, R.J., Gearinger, D., Wild, H. (2019). The wandering mind oscillates: EEG alpha power is enhanced during moments of mind-wandering. Cognitive, Affective, Behavioral Neuroscience, 19, 5, 1184–1191.
 
19.
Corti, C., Poggi, G., Romaniello, R., Strazzer, S., Urgesi, C., Borgatti, R., Bardoni, A. (2018). Feasibility of a home-based computerized cognitive training for pediatric patients with congenital or acquired brain damage: An explorative study. PLOS ONE, 13(6), e0199001.
 
20.
Craik, A., He, Y., Contreras-Vidal, J.L. (2019). Deep learning for electroencephalogram (EEG) classification tasks: a review. Journal of Neural Engineering, 16, 031001.
 
21.
Cristino, L., Bisogno, T., Di Marzo, V. (2020). Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nature Reviews Neurology, 16, 9–29.
 
22.
Cushman, L.A., Stein, K., Duffy, C.J. (2008). Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality. Neurology, 71, 888–895.
 
23.
Del Rey, N.L.-G., Quiroga-Varela, A., Garbayo, E., Carballo-Carbajal, I., Fernández-Santiago, R., Monje, M.H.G., Trigo-Damas, I., Blanco-Prieto, M.J., Blesa, J. (2018). Advances in Parkinson’s Disease: 200 Years Later. Frontiers in Neuroanatomy, 12, 113, DOI: 10.3389/fnana.2018.00113.
 
24.
Deng, L. (2014). Deep Learning: Methods and Applications. Foundations and Trends® in Signal Processing, 7, 3–4, 197–387.
 
25.
Ebert, D.H., Greenberg, M.E. (2013). Activity-dependent neuronal signalling and autism spectrum disorder. Nature, 493, 327–337.
 
26.
Erguzel, T.T., Uyulan, C., Unsalver, B., Evrensel, A., Cebi, M., Noyan, C.O., Metin, B., Eryilmaz, G., Sayar, G. H., Tarhan, N. (2020). Entropy: A Promising EEG Biomarker Dichotomizing Subjects With Opioid Use Disorder and Healthy Controls. Clinical EEG and Neuroscience, 51(6), 373–381.
 
27.
Ferreira, C., Almeida, C., Tenreiro, S., Quintas, A. (2020). Neuroprotection or Neurotoxicity of Illicit Drugs on Parkinson’s Disease. Life, 10, 86, DOI: 10.3390/life10060086.
 
28.
Fink, A., Benedek, M. (2014). EEG alpha power and creative ideation. Neuroscience & Biobehavioral Reviews, 44, 111–123.
 
29.
Fowler, C.J. (2021). The endocannabinoid system  – current implications for drug development. Journal of Internal Medicine, 290, 2–26.
 
30.
Gidon, A., Zolnik, T. A., Fidzinski, P., Bolduan, F., Papoutsi, A., Poirazi, P., Holtkamp, M., Vida, I., Larkum, M.E. (2020). Dendritic action potentials and computation in human layer 2/3 cortical neurons. Science, 367, 6473, 83–87.
 
31.
Gola, M., Magnuski, M., Szumska, I., Wróbel, A. (2013). EEG beta band activity is related to attention and attentional deficits in the visual performance of elderly subjects. International Journal of Psychophysiology, 89, 3, 334–341.
 
32.
Goodman, M.S., Kumar, S., Zomorrodi, R., Ghazala, Z., Cheam, A.S.M., Barr, M.S., Daskalakis, Z.J., Blumberger, D.M., Fischer, C., Flint, A., Mah, L., Herrmann, N., Bowie, C.R., Mulsant, B.H., Rajji, T.K. (2018). Theta-Gamma Coupling and Working Memory in Alzheimer’s Dementia and Mild Cognitive Impairment. Frontiers in Aging Neuroscience, 10, 101.
 
33.
Grundman, M. (2004). Mild Cognitive Impairment Can Be Distinguished From Alzheimer Disease and Normal Aging for Clinical Trials. Archives of Neurology, 61, 59.
 
34.
Hata, M., Watanabe, Y., Tanaka, T., Awata, K., Miyazaki, Y., Fukuma, R., Taomoto, D., Satake, Y., Suehiro, T., Kanemoto, H., Yoshiyama, K., Iwase, M., Ikeda, S., Nishida, K., Takekita, Y., Yoshimura, M., Ishii, R., Kazui, H., Harada, T., Kishima, H., Ikeda, M., Yanagisawa, T. (2021). Precise Discrimination for Multiple Underlying Pathologies of Dementia Cases Based on Deep-Learning with Electroencephalography [praca niepublikowana].
 
35.
He, J.-T., Li, X.-Y., Yang, L., Zhao, X. (2020). Astroglial connexins and cognition: memory formation or deterioration? Bioscience Reports, 40, BSR20193510.
 
36.
Hinton, G.E. (2012). APractical Guide to Training Restricted Boltzmann Machines. W: Montavon, G., Orr, G.B., Müller, K.-R. (eds.), Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science (s. 599–619). Springer Berlin Heidelberg, Berlin, Heidelberg.
 
37.
Hinton, G.E., Salakhutdinov, R.R. (2006). Reducing the Dimensionality of Data with Neural Networks. Science, 313, 504–507.
 
38.
Hong, S.E., Jeong, D., Hwang, H.S., Kim, J. (2021). Revealing the Local Cosmic Web from Galaxies by Deep Learning. The Astrophysical Journal, 913, 1, 76, DOI: 10.3847/1538-4357/abf040.
 
39.
Hubbard, N.A., Turner, M.P., Sitek, K.R., West, K.L., Kaczmarzyk, J.R., Himes, L., Thomas, B.P., Lu, H., Rypma, B. (2021). Resting cerebral oxygen metabolism exhibits archetypal network features. Hum Brain Mapp, 42, 1952–1968.
 
40.
Jensen, O., Mazaheri, A. (2010). Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition. Frontiers in Human Neuroscience, 4.
 
41.
Jha, D., Kim, J.-I., Kwon, G.-R. (2017). Diagnosis of Alzheimer’s Disease Using Dual-Tree Complex Wavelet Transform, PCA, and Feed-Forward Neural Network. Journal of Healthcare Engineering, 2017, 1–13, DOI: 10.1155/2017/9060124.
 
42.
Jeong, J. (2004). EEG dynamics in patients with Alzheimer’s disease. Clinical Neurophysiology, 115, 7, 1490–1505.
 
43.
Jin, C.Y., Borst, J.P. (2019). Predicting task-general mind-wandering with EEG. Cognitive, Affective, & Behavioral Neuroscience, 15.
 
44.
Kamiński, J., Sullivan, S., Chung, J.M., Ross, I.B., Mamelak, A.N., Rutishauser, U. (2017). Persistently active neurons in human medial frontal and medial temporal lobe support working memory. Nature Neuroscience, 20, 590–601.
 
45.
Kesner, A.J., Lovinger, D.M. (2020). Cannabinoids, Endocannabinoids and Sleep. Frontiers in Molecular Neuroscience, 13, 125.
 
46.
Kim, O., Pang, Y., Kim, J.-H. (2019). The effectiveness of virtual reality for people with mild cognitive impairment or dementia: a meta-analysis. BMC Psychiatry, 19, 219.
 
47.
Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29, 2–3, 169–195.
 
48.
Klimesch, W., Sauseng, P., Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition–timing hypothesis. Brain Research Reviews, 53, 1, 63–88.
 
49.
Klimova, B., Maresova, P. (2017). Computer-Based Training Programs for Older People with Mild Cognitive Impairment and/or Dementia. Frontiers in Human Neuroscience, 11, 262.
 
50.
Köster, M., Finger, H., Graetz, S., Kater, M., Gruber, T. (2018). Theta-gamma coupling binds visual perceptual features in an associative memory task. Scientific Reports, 8, 17688.
 
51.
Kumar, S., Sharma, A., Tsunoda, T. (2019). Brain wave classification using long short-term memory network based OPTICAL predictor. Scientific Reports, 9, 9153.
 
52.
Laje, R., Buonomano, D.V. (2013). Robust timing and motor patterns by taming chaos in recurrent neural networks. Nature Neuroscience, 16, 925–933.
 
53.
Lee, J.-W., Park, W. B., Lee, J. H., Singh, S. P., Sohn, K.-S. (2020). A deep-learning technique for phase identification in multiphase inorganic compounds using synthetic XRD powder patterns. Nature Communications, 11, 1, 86.
 
54.
Lin, H., Jin, T., Chen, Lewen, Dai, Y., Jia, W., He, X., Yang, M., Li, J., Liang, S., Wu, J., Huang, J., Chen, Lidian, Liu, W., Tao, J. (2021). Longitudinal tracing of neurochemical metabolic disorders in working memory neural circuit and optogenetics modulation in rats with vascular cognitive impairment. Brain Research Bulletin, 170, 174–186.
 
55.
Lisman, J.E., Idiart, M.A.P. (1995). Storage of 7 ± 2 Short-Term Memories in Oscillatory Subcycles. Science, 267, 1512–1515.
 
56.
Lisman, J.E., Jensen, O. (2013). The Theta-Gamma Neural Code. Neuron 77, 1002–1016.
 
57.
Magosso, E., Crescenzio, F.D., Ricci, G., Piastra, S., Ursino, M. (2019). EEG Alpha Power is Modulated by Attentional Changes during Cognitive Tasks and Virtual Reality Immersion. Computational Intelligence and Neuroscience, 19, DOI: 10.1155/2019/7051079.
 
58.
Majoros, T., Ujvári, B., Oniga, S. (2019). EEG data processing with neural network. Carpathian Journal of Electronic and Computer Engineering, 12, 2, 33–36.
 
59.
Meisl, G., Hidari, E., Allinson, K., Rittman, T., DeVos, S.L., Sanchez, J.S., Xu, C.K., Duff, K.E., Johnson, K.A., Rowe, J.B., Hyman, B.T., Knowles, T.P.J., Klenerman, D. (2021). In vivo rate-determining steps of tau seed accumulation in Alzheimer’s disease. Science Advances, 7, 44, 1448.
 
60.
Minichino, A., Jackson, M.A., Francesconi, M., Steves, C.J., Menni, C., Burnet, P.W.J., Lennox, B.R. (2021). Endocannabinoid system mediates the association between gutmicrobial diversity and anhedonia/amotivation in a general population cohort. Molecular Psychiatry, 26, 6269–6276.
 
61.
Mullins, R.F., Schoo, D.P., Sohn, E.H., Flamme-Wiese, M.J., Workamelahu, G., Johnston, R.M., Wang, K., Tucker, B.A., Stone, E.M. (2014). The Membrane Attack Complex in Aging Human Choriocapillaris. The American Journal of Pathology, 184, 3142–3153.
 
62.
Navamani, K. (2019). Extended Einstein diffusion-mobility equation for two-dimensional Schrödinger-type quantum materials. Statistical Mechanics: Physical Sciences and Engineering, 35.
 
63.
Noda, Y., Zomorrodi, R., Saeki, T., Rajji, T.K., Blumberger, D.M., Daskalakis, Z.J., Nakamura, M. (2017). Resting-state EEG gamma power and theta–gamma coupling enhancement following high-frequency left dorsolateral prefrontal rTMS in patients with depression. Clinical Neurophysiology, 128, 3, 424–432.
 
64.
Palsson, S., Agustsson, E., Timofte, R., Van Gool, L. (2018). Generative Adversarial Style Transfer Networks for Face Aging. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2165–21658.
 
65.
Parish, G., Hanslmayr, S., Bowman, H. (2018). The Sync/deSync Model: How a Synchronized Hippocampus and a Desynchronized Neocortex Code Memories. Journal of Neuroscience, 38, 3428–3440.
 
66.
Parr, T., Limanowski, J., Rawji, V., Friston, K. (2021). The computational neurology of movement under active inference. Brain, 144, 1799–1818.
 
67.
Perez, J.D., Rubinstein, N.D., Fernandez, D.E., Santoro, S.W., Needleman, L.A., Ho-Shing, O., Choi, J.J., Zirlinger, M., Chen, S.-K., Liu, J.S., Dulac, C. (2015). Quantitative and functional interrogation of parent-of-origin allelic expression biases in the brain. eLife, 4, e07860.
 
68.
Petersen, R.C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Neuroscience, 256, 183–194.
 
69.
Quin, H. (2020). Machine learning and serving of discrete field theories. Scientific Reports, 10, 19329.
 
70.
Radford, A., Metz, L., Chintala, S. (2016). Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv:1511.06434.
 
71.
Radivojević, T., Costello, Z., Workman, K., Garcia Martin, H. (2020). Amachine learning Automated Recommendation Tool for synthetic biology. Nature Communications, 11, 1, 4879.
 
72.
Rangayyan, R.M. (2002). Biomedical Signal Analysis, New York, USA: IEEE press in Biomedical Engineering.
 
73.
Robison, A.J., Nestler, E.J. (2011). Transcriptional and epigenetic mechanisms of addiction. Nature Reviews Neuroscience, 12, 623–637.
 
74.
Romei, V., Gross, J., Thut, G. (2010). On the Role of Prestimulus Alpha Rhythms over Occipito-Parietal Areas in Visual Input Regulation: Correlation or Causation? Journal of Neuroscience, 30, 8692–8697.
 
75.
Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T.H., Faubert, J., 2019. Deep learning-based electroencephalography analysis: a systematic review. Journal of Neural Engineering, 16, 051001.
 
76.
Russo, S.J., Dietz, D.M., Dumitriu, D., Morrison, J.H., Malenka, R.C., Nestler, E.J. (2010). The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends in Neurosciences, 33, 267–276.
 
77.
Salomon, F.D.R., Marisa, S.G., Nathaly, M.A.P. (2020). Study of Artificial Intelligence Models Applied to the Analysis of Electroencephalograms in Alzheimer’s Disease. Universidad De Investigación De Tecnología Experimental Yachay Escuela de Ciencias Matemáticas y Computacionales. Pobrano z: http://repositorio.yachaytech.... [10.11.2021].
 
78.
Sangaiah, A. (ed.) (2019). Deep Learning and Parallel Computing Environment for Bioengineering Systems. Elsevier.
 
79.
Santoro, A., Mele, E., Marino, M., Viggiano, A., Nori, S.L., Meccariello, R. (2021). The Complex Interplay between Endocannabinoid System and the Estrogen System in Central Nervous System and Periphery. International Journal of Molecular Sciences, 22, 972.
 
80.
Sauseng, P., Klimesch, W., Gerloff, C., Hummel, F.C. (2009). Spontaneous locally restricted EEG alpha activity determines cortical excitability in the motor cortex. Neuropsychologia, 47, 284–288.
 
81.
Sauseng, P., Klimesch, W., Heise, K.F., Gruber, W.R., Holz, E., Karim, A.A., Glennon, M., Gerloff, C., Birbaumer, N., Hummel, F.C. (2009). Brain Oscillatory Substrates of Visual Short-Term Memory Capacity. Current Biology, 19, 1846–1852.
 
82.
Seo, J., Laine, T.H., Oh, G., Sohn, K.-A. (2020). EEG-Based Emotion Classification for Alzheimer’s Disease Patients Using Conventional Machine Learning and Recurrent Neural Network Models. Sensors, 20, 7212.
 
83.
Smallwood, J., Schooler, J.W. (2015). The Science of Mind Wandering: Empirically Navigating the Stream of Consciousness. Annual Review of Psychology, 66, 1, 487–518.
 
84.
Stern, J.M., Engel, J. (2013). Atlas of EEG patterns. Wolters Kluwer – Lippincott Williams & Wilkins.
 
85.
Stretton, J., Thompson, P.J. (2012). Frontal lobe function in temporal lobe epilepsy. Epilepsy Research, 98, 1, 1–13.
 
86.
Tamura, M., Spellman, T.J., Rosen, A.M., Gogos, J.A., Gordon, J.A. (2017). Hippocampalprefrontal theta-gamma coupling during performance of a spatial working memory task. Nature Communications, 8, 2182.
 
87.
Tanveer, M., Richhariya, B., Khan, R.U., Rashid, A.H., Khanna, P., Prasad, M., Lin, C.T. (2020). Machine Learning Techniques for the Diagnosis of Alzheimer’s Disease: AReview. ACM Transactions on Multimedia Computing, Communications, and Applications, 16.
 
88.
Tokhmpash, A., Hadipour, S., Shafai, B. (2020). On Analysis of Fractional Order System Identification. 2020 IEEE Conference on Control Technology and Applications (CCTA), 237–241.
 
89.
Tirozzi, B., Londei, F., Gianani, S. (2020). Depolarization Block in the Endocannabinoid System of the Hippocampus. Journal of Neuroscience, 1, 85–97, DOI: 10.3390/neurosci1020008.
 
90.
Triggiani, A.I., Bevilacqua, V., Brunetti, A., Lizio, R., Tattoli, G., Cassano, F., Soricelli, A., Ferri, R., Nobili, F., Gesualdo, L., Barulli, M.R., Tortelli, R., Cardinali, V., Giannini, A., Spagnolo, P., Armenise, S., Stocchi, F., Buenza, G., Scianatico, G., Logroscino, G., Lacidogna, G., Orzi, F., Buttinelli, C., Giubilei, F., Del Percio, C., Frisoni, G.B., Babiloni, C. (2017). Classification of Healthy Subjects and Alzheimer’s Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: AStudy Using Artificial Neural Networks. Frontiers in Human Neuroscience, 10, DOI: 10.3389/fnins.2016.00604.
 
91.
Thut, G. (2006). Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial Attention Bias and Predicts Visual Target Detection. Journal of Neuroscience, 26(37), 9494–9502.
 
92.
Upadhya, V., Sastry, P.S. (2019). An Overview of Restricted Boltzmann Machines. Journal of the Indian Institute of Science, 99, 225–236.
 
93.
Urban, N., Guillemot, F. (2014). Neurogenesis in the embryonic and adult brain: same regulators, different roles. Frontiers in Cellular Neuroscience, 8.
 
94.
Vahid, A., Mückschel, M., Stober, S., Stock, A.-K., Beste, C. (2020). Applying deep learning to single-trial EEG data provides evidence for complementary theories on action control. Communications Biology, 3, 112.
 
95.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I. (2017). Attention is All you Need. W: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (eds.), Advances in Neural Information Processing Systems. Vol. 30. Curran Associates, Inc.
 
96.
Venkatesh, H.S., Morishita, W., Geraghty, A.C., Silverbush, D., Gillespie, S.M., Arzt, M., Tam, L.T., Espenel, C., Ponnuswami, A., Ni, L., Woo, P.J., Taylor, K.R., Agarwal, A., Regev, A., Brang, D., Vogel, H., Hervey-Jumper, S., Bergles, D.E., Suvà, M.L., Malenka, R.C., Monje, M. (2019). Electrical and synaptic integration of glioma into neural circuits. Nature, 573, 539–545.
 
97.
Vincent-Lamarre, P., Calderini, M., Thivierge, J.-P. (2020). Learning Long Temporal Sequences in Spiking Networks by Multiplexing Neural Oscillations. Frontiers in Computational Neuroscience, 14, 78.
 
98.
Yang, L., Chen, Z., Li, J., Ding, P., Wang, Y. (2021). Effects of Escitalopram on Endoplasmic Reticulum Stress and Oxidative Stress Induced by Tunicamycin. Frontiers in Human Neuroscience, 15, 737509.
 
99.
YaoChong, L., Ri-Gui, R., RuiQing, X., Wen Wen, H., Ping, F. (2021). Quantum algorithm for the nonlinear dimensionality reduction with arbitrary kernel. Quantum Science and Technology, 6, 1, 6 014001.
 
100.
Zahra, A., Kanwal, N., Ur Rehman, N., Ehsan, S., McDonald-Maier, K.D. (2017). Seizure detection from EEG signals using Multivariate Empirical Mode Decomposition. Computers in Biology and Medicine, 88, 132–141.
 
101.
Zani, A., Tumminelli, C., Proverbio, A.M. (2020). Electroencephalogram (EEG) Alpha Power as a Marker of Visuospatial Attention Orienting and Suppression in Normoxia and Hypoxia. An Exploratory Study. Brain Sciences, 10, 3, 140.
 
102.
Zedelius, C.M., Broadway, J.M., Schooler, J.W. (2015). Motivating meta-awareness of mind wandering: A way to catch the mind in flight? Consciousness and Cognition, 36, 44–53.
 
103.
Zeiler, M.D., Fergus, R. (2014). Visualizing and Understanding Convolutional Networks, in: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Computer Vision  – ECCV 2014, Lecture Notes in Computer Science. Springer International Publishing, 818–833.
 
104.
Zhang, H., Watrous, A.J., Patel, A., Jacobs, J. (2018). Theta and Alpha Oscillations Are Traveling Waves in the Human Neocortex. Neuron, 98, 1269–1281.e4.
 
eISSN:2300-7109
Journals System - logo
Scroll to top