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Abstract: Accurate assessment of the effects of parameters on the flotation process is important for 

understanding the complex flotation mechanisms. To address the problem of unsatisfactory prediction 

of large sample flotation data (641 sets) by traditional machine learning algorithms, four advanced 

algorithms (GBDT, CatBoost, LightBGM and XGBoost) are used in this paper to investigate the effects 

of feed properties and flotation conditions on the effectiveness of coal flotation. It was found that the 

data at flotation recoveries below <40% were difficult to predict effectively by machine learning 

algorithms due to abnormal flotation results caused by lower flotation reagent dosages. An importance 

analysis of flotation parameters and prediction of flotation results were carried out based on the 

reordered data. The results showed that the fraction and ash content of -74 um in the feed are the main 

factors affecting concentrate yield and ash content. The XGBoost model also achieved the best prediction 

results compared to other models, and the prediction coefficient of determination R2 reached 0.877 and 

0.971 for concentrate yield and ash content, respectively. The results are expected to provide a reference 

for the intelligent control of coal beneficiation plant by machine learning technology in the future. 

Keywords: machine learning, coal flotation, prediction, XGBoost model, flotation parameters 

1. Introduction 

The overall sophistication of flotation intelligence within coal preparation plants remains inadequately 

low, representing a significant bottleneck to the advancement of intelligent production and 

management practices in this sector (Flores et al., 2024). A transformative approach to the flotation 

process is urgently needed to improve mineral processing efficiency, reduce production costs, and 

ensure operational safety. In this context, deep learning technology is emerging as a key avenue for 

facilitating intelligent coal slurry flotation in the foreseeable future (Abkhoshk et al., 2010; Meng et al., 

2022). The application of deep learning enables real-time monitoring, intelligent control, and optimal 

scheduling of the flotation process, which is expected to significantly improve both flotation efficiency 

and environmental performance. An intelligent coal slurry flotation system can achieve precise control 

and optimization by integrating state-of-the-art control systems, sophisticated sensors, and advanced 

data processing technologies (Zhao et al., 2022). This system requires real-time and accurate monitoring 

of numerous parameters, including chemical dosing, slurry concentration, flow rate, liquid level height 

and product ash content. Building on this foundation, advanced machine learning techniques can be 

used to predict sorting results and adjust parameters accordingly, ultimately maximizing flotation yield 

and improving economics (Ali et al., 2018; Chelgani et al., 2024; Meng et al., 2022). 

The parameters affecting the flotation process can be categorized into four primary dimensions: 

liquid variables, reagent variables, gas variables and solids variables (Sun et al., 2023; Vinnett et al., 

2023). Traditionally, single-factor experimental designs have been used to evaluate the effect of 

individual parameters on the flotation process. However, a number of advanced experimental methods 
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have been used to optimize flotation processes and investigate the interactions between different 

influencing factors, including the Taguchi method (du Plessis and de Villiers, 2007; Lubisi et al., 2018; 

Sachinraj et al., 2022) and response surface methodology (Arancibia-Bravo et al., 2022; Bu et al., 2016; 

Wang et al., 2016; Wang et al., 2021). Multiple nonlinear regression is often used to predict flotation 

responses, both in the Taguchi method and in response surface methodology. However, multivariable 

linear regression typically provides modest predictive performance, with an R² value of approximately 

0.8. To improve prediction accuracy, various machine learning techniques have been incorporated into 

flotation process prediction. Gomez-Flores et al. (2022) used multivariate linear regression, k-nearest 

neighbours, decision trees and random forests to model flotation grade and recovery based on 

physicochemical and operational parameters and found that random forests showed superior 

predictive performance for flotation concentrate grade and recovery.  Guner et al. (2024) found that 

genetic programming (GP) with novel data demonstrated greater accuracy in predicting grade, while 

random forests excelled in predicting recovery. Furthermore, Ali et al. (2018) conducted a comparative 

analysis of the predictive behaviour in fine high-ash coal flotation using random forests (RF), artificial 

neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), Mamdani fuzzy logic (MFL) 

and a hybrid neural-fuzzy inference system (HyFIS), and concluded that the MFL model provided the 

most favourable performance. A number of studies have successfully implemented intelligent soft 

computing (IS) methods, including various types of artificial neural networks (ANNs) and the adaptive 

neuro-fuzzy inference system (ANFIS), to model mineral flotation responses dependent on process and 

sample conditions. Although these models are recognised for their reliability in predicting coal 

responses, they often fall short in assessing the correlations between flotation results and operating 

conditions (Bu et al., 2021). In this context, random forests (RF), as a sophisticated machine learning 

tool, not only facilitates the ranking of input variables based on their importance in influencing outputs, 

but also competently addresses linear and non-linear challenges (Chehreh Chelgani et al., 2016; 

Chelgani and Matin, 2018). In the field of mineral flotation, random forests have been applied to 

evaluate the effects of different parameters on coarse particle flotation recovery (Nazari et al., 2019), 

model coal flotation responses under different operating conditions (Bu et al., 2021), predict copper 

flotation recovery (Flores et al., 2024), and predict froth flotation responses influenced by different 

conditioning parameters (Shahbazi et al., 2017).   

Gradient boosting trees are an advanced ensemble learning technique within the field of boosting 

methods (Zhang et al., 2019). Adaboost, for example, uses the error rates of weak learners from previous 

iterations to strategically adjust the weights of the training dataset, facilitating a sequential refinement 

process. In contrast, Gradient Boosting Decision Trees (GBDT) use a forward stepwise approach where 

the weak learners are constrained to the CART (Classification and Regression Trees) regression tree 

model (Zhang and Jánošík, 2024). The goal of each iteration is to identify a CART weak learner that 

minimises the loss function. As the algorithm has evolved, GBDT has given rise to several prominent 

implementations, most notably XGBoost, CatBoost and LightGBM. The proliferation of machine 

learning methods and the growing volume of data have spurred continuous advances in gradient 

boosting algorithms (Ma et al., 2018). For example, XGBoost (eXtreme Gradient Boosting) is a highly 

efficient boosting algorithm that uses second-order derivative information to optimise the loss function. 

It also incorporates features such as feature selection and tree pruning to reduce the risk of 

overfittingnm (Carmona et al., 2019). LightGBM, developed by Microsoft on top of the gradient boosting 

framework, uses a histogram-based decision tree algorithm, which allows it to effectively handle large 

datasets and high-dimensional feature spaces (Sun et al., 2020). Meanwhile, the CatBoost algorithm, 

innovated by Yandex, has features such as automatic missing value handling and support for GPU 

acceleration, which significantly improves its performance when dealing with datasets characterised by 

many categorical features. As a result, CatBoost has demonstrated remarkable effectiveness in various 

real-world applications (Chelgani et al., 2024). 

Recently, Chelgani et al. (2024) conducted a comparative analysis of the predictive effectiveness of 

various machine learning models, including Catboost, Random Forest, Support Vector Regression, 

Extreme Gradient Boosting and Convolutional Neural Networks. Their results showed that Catboost 

outperformed the other models, achieving an impressive accuracy (R²: 0.90) in predicting the 

metallurgical responses of copper flotation, particularly in terms of grade and recovery. In the context 
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of coal flotation, Bu et al. (2024) collected a dataset of 641 valid samples for model training and 

validation. They developed an enhanced deep neural network (DNN) architecture to predict the quality 

of flotation products. Their results showed that the proposed DNN model yielded superior R² values - 

0.71 for concentrate yield and 0.87 for concentrate ash content - compared to Random Forest. However, 

it is noteworthy that the permutation feature importance analysis could not be performed for all input 

features in the DNN model proposed by Bu et al. (2024). This limitation highlights the urgent need to 

develop highly efficient and accurate models that can provide robust predictive performance across the 

full set of 641 datasets. 

In this study, a comparative analysis of the predictive performance of GBDT, CatBoost, LightGBM, 

and XGBoost in the context of coal flotation was conducted. The flotation data were categorized into 

two different groups based on concentrate levels and were used to explore the reasons for the low 

prediction accuracy of flotation results. Also, the feature importance has been analyzed using different 

datasets. 

2. Materials and methods 

2.1. Data collection 

A comprehensive dataset of 641 instances of laboratory unit flotation data for coal samples from 

different regions was curated from the publicly available supplementary material detailed in the 

literature Bu et al. (2024). The dataset encompasses eight input parameters alongside four output 

parameters, as delineated in Table 1. Our analysis concentrates exclusively on the modeling and 

prediction of concentrate yield and ash content. Fig. 1 elucidates the complex interrelationships among 

concentrate yield, ash content, and tailings. The concentrate yields display a remarkable range, 

oscillating between 1.3% and 97.1%, while the ash content spans from 2.97% to 33.2%. Tailings are 

similarly observed to fluctuate between 17.3% and 84.5%. This considerable variability in concentrate 

yield and ash content underscores the dataset's ability to encapsulate a diverse spectrum of feed 

characteristics and flotation conditions. 

Table 1. Input and output parameters in the dataset 

Parameter types Parameters 

Input parameters 

Feed properties 

Ash content of feed 

Pulp density 

Fraction of -74 μm in feed 

Ash content of -74 μm in feed 

Flotation conditions 

Collector dosage 

Frother dosage 

Aeration 

Rotation speed 

Output parameters 

Concentrate properties 
Concentrate yield 

Concentrate ash content 

Tailing properties 
Tailing yield 

Tailing ash content 

 

Fig. 1. Relationship between yield and ash content of flotation concentrate (a) and tailing (b) in the full dataset 
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2.2. Regression prediction 

Model training and data analysis were performed using the SPSSPRO software suite. The dataset, 

consisting of 641 instances of flotation data, was divided into training and test sets in an 8:2 ratio. This 

study is based on a decision tree framework inspired by the boosting methodology, specifically using 

the gradient boosting algorithm for our investigations. We selected four widely used gradient boosting 

decision tree models recognized for their superior predictive performance: GBDT, CatBoost, LightGBM 

and XGBoost. Compared to other machine learning models, such as Support Vector Machine (SVM), 

Random Forests (RF), and Artificial Neural Networks(ANN), the four algorithms analyzed in this paper 

offer several advantages, including high robustness, strong generalization capabilities, and rapid 

training times. Additionally, these algorithms can effectively assess the importance of various features, 

providing valuable insights for understanding and evaluating the models. Using these selected models, 

we performed regression analysis to predict both coal yield and ash content. 

2.3. Model optimization 

Hyperparameters are parameters that need to be manually set before training a machine learning 

model, such as learning rate and tree depth. The choice of hyperparameters can have a large impact on 

the performance of the model, so hyperparameter optimization is needed to find the best combination 

of hyperparameters to improve the performance and generalization of the model. The Bayesian 

algorithm is used to optimize the model in this model building process. The hyperparameters for the 

four models to be optimized are shown in Table 2. 

Table 2. Hyperparameters optimized for different models 

GBDT CatBoost LightGBM XGBoost 

Loss function Number of iterations Base learner Base learner 

Node split criterion Learning rate 
Number of base 

learners 

Number of base 

learners 

Number of base 

learners 
L2 regularization term Learning rate Learning rate 

Learning rate Maximum depth of tree L1 regularization term L1 regularization term 

Sampling ratio without 

replacement 

Overfitting detection 

threshold 
L2 regularization term L2 regularization term 

Maximum features 

ratio considered for 

splitting 

Number of iterations 

after convergence 

Sample feature 

sampling rate 

Sample feature 

sampling rate 

Minimum samples for 

split in internal nodes 
- 

Tree feature sampling 

rate 

Tree feature sampling 

rate 

Minimum samples for 

leaf node 
- Node split threshold Node split threshold 

Minimum weight of 

samples in leaf node 

- Minimum weight of 

samples in a leaf node 

Minimum weight of 

samples in a leaf node 

3. Results and discussion 

3.1. Regression prediction for the all datasets 

Four regression models, GBDT, CatBoost, LightBGM and XGBoost, were used to learn the training set 

(512 records) and predict the test set (129 records) respectively. The training and test sets are the same 

for all four models. The hyperparameters are optimised using a Bayesian approach to obtain the optimal 

prediction model. The relationship between the real and predicted data for refined mineral yield and 

ash content after optimisation of the different models is shown in Fig. 2 and Fig. 3. The coefficient of 

determination (R2) of the four regression models, GBDT, CatBoost, LightBGM and XGBoost, for the 

prediction of concentrate yield were 0.764, 0.827, 0.800, 0.836 and the R2 for the prediction of ash content 

were 0.688, 0.829, 0.817 and 0.853 respectively. The results indicate that the XGBoost model has the 
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highest accuracy for both yield and ash prediction. However, the prediction accuracy of all four models 

was insufficient for concentrate yield and ash. As can be seen from the offset law between the predicted 

and actual values in Fig. 2, the prediction accuracy for concentrate yield below 40% is significantly lower 

than that for concentrate yield above 40%. 

 

Fig. 2. Test set prediction results of (a) GBDT, (b) CatBoost, (c) LightBGM, and (d) XGBoost model for the 

flotation concentrate yield 

 

Fig. 3. Test set prediction results of (a) GBDT, (b) CatBoost, (c) LightBGM, and (d) XGBoost model for the ash 

content of flotation concentrate 
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Two representative sets of flotation data were selected from the dataset to determine the reasons for 

the large difference in prediction accuracy for concentrate yields less than 40% and greater than 40%. 

The results of the variation of flotation concentrate yield and ash with collector dosage (the ratio of 

collector to frother dosage is 3:1) are shown in Fig. 4. Data 1 and Data 2 show the flotation results of two 

coal pulps with different feed characteristics. The results of data 1 show that the concentrate yield and 

ash content are about 15% and 10%, respectively, when the collector dosage is less than 400 g/t. 

However, when the collector dosage is more than 600 g/t, the concentrate yield and ash content increase 

slowly after a sharp increase, and the yield and ash content are more than 50% and 20%, respectively. 

The results of data 2 show that the concentrate yield is 32% when the collector dosage is 100g/t, and 

when the collector dosage is more than 200g/t, the concentrate yield increases significantly to more than 

60% and then increases slowly. It can be seen that the concentrate yield at low trapping agent dosage is 

significantly lower than the flotation yield at normal or excessive trapping agent dosage, thus showing 

different laws. Therefore, the use of the full dataset for machine learning may be the main reason for 

the low prediction accuracy in Fig. 2 and Fig. 3.  

 

Fig. 4. (a) yield and (b) ash content of the flotation concentrate using different data 

3.2.  Regression prediction for the categorical datasets 

The full dataset used for machine learning was categorised. Data with less than 40% concentrate 

recoveries were filtered into Dataset I (116 records), while data with recoveries greater than 40% were 

grouped into Dataset II (525 records). Dataset I consists mainly of the results when the flotation 

chemicals are used at low doses, while Dataset II consists mainly of the results when the flotation 

chemicals are used at normal or excessive doses. These two datasets were randomised separately and 

then 80% of the data was used as the training set and the remaining 20% as the test set. Four machine 

learning methods, GBDT, CatBoost, LightBGM and XGBoost, were used to train modelling and 

regression prediction respectively on the two datasets. The comparison of predicted and true values for 

Dataset I and Dataset II is shown in Fig. 5 and Fig. 6. 

The prediction accuracy of the four machine learning methods is evaluated by three metrics, Root 

Mean Squard Error (RMSE), Mean Absolute Error (MAE) and R2, and the results are shown in Fig. 7. 

The smaller the calculation results of MAE and RMSE, the smaller the error value between the predicted 

value and the actual value, and the model predicted value has better reliability. The value of R2 is 

between 0 and 1, and the closer R2  is to 1, the better the fitting effect works. The prediction models built 

by the four machine learning methods for Dataset I have high MAE and RMSE and very low R2 (below 

0.4). This indicates that it is difficult for all four machine learning methods to build accurate predictive 

models for Dataset I. When the flotation reagent dosage is low, the flotation concentrate yield and ash 

content have a certain degree of randomness and poor regularity. This leads to the difficulty of 

regression prediction of this part of the data using machine learning methods. The accuracy of the 

prediction models built by the four models for Dataset II was significantly improved when the data 

with flotation concentrate yield less than 40% in the original dataset were removed. Among the four 

machine learning methods, the accuracy of the prediction model XGBoost>LightBGM>CatBoost>GBDT 

was the best.  Taking the prediction model established by XGBoost as an example, compared to the full 

dataset, the RMSE, MAE and R2 metrics of the concentrate yield prediction model established for 
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Dataset I were improved from 8.37, 5. 28 and 0.836 to 5.08, 3.56 and 0.877 respectively, and those of the 

concentrate ash content prediction model were improved from 1.83, 0.96 and 0.853 to 0.85, 0.57 and 

0.971 respectively. Compared to the whole Dataset and Dataset I, the reliability and fit of the prediction 

model  for  Dataset  II  were  significantly  improved.  From  this  result, it can be speculated that machine 

 

Fig. 5. Test set prediction results of (a) GBDT, (b) CatBoost, (c) LightBGM, and (d) XGBoost models for the 

flotation concentrate yield using different dataset 

 

Fig. 6. Test set prediction results of (a) GBDT, (b) CatBoost, (c) LightBGM, and (d) XGBoost models for the 

ash content the flotation concentrate using different dataset 
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learning modelling using data results of appropriate flotation chemical dosing may be more suitable for 

online prediction of concentrate yield and ash content in future flotation plants. 

According to the collected flotation data (Bu et al., 2024), it can be seen that the corresponding 

flotation reagent dosage is usually lower when the flotation yield is below 40%. The basic requirement 

for a high flotation selectivity  is the existence of a significant difference in hydrophobicity between coal 

and gangue (Ramudzwagi et al., 2020). When the amount of collector is low, the difference in 

hydrophobicity between coal and gangue is too small, making it difficult for coal particles to adhere to 

the surface of bubbles and enter the concentrate product (Bu et al., 2020). In addition, when the amount 

of frother is too low, it is difficult to form a stable foam layer in flotation, resulting in that hydrophobic 

coal particles adhered to the bubble surface cannot be recycled into concentrate products through the 

foam area (Pawliszak et al., 2024). The lower dosage of flotation reagents results in very poor selectivity 

of flotation results, leading to high randomness and poor predictability of flotation results. Therefore, 

appropriate screening of collected flotation data is an important step in ensuring the accuracy and 

effectiveness of flotation prediction. 

 

Fig. 7. Comparison of the accuracy of the prediction models of the four machine learning methods 

3.3. Feature importance analysis 

The results of the importance analyses of the prediction models for the full dataset are shown in the 

Supporting Information (Fig. R1 and Fig. R2). The results of the importance analysis of concentrate 

yield show that the importance of frother dosing is always in the top two in the order of importance 

obtained by all models. The presence of a frother reduces the surface tension, which is beneficial for 

inhibiting bubble incorporation and maintaining the stability of the foam layer. Therefore, frother 

dosage is a key factor influencing concentrate yield. The results of the importance analysis of the 

https://blog.csdn.net/xovee/article/details/120298070
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prediction model for Dataset II are shown in Fig. 8 and Fig. 9. When the part of the dataset with a yield 

of <40% is removed, the importance of the frother for the concentrate yield decreases significantly. This 

may be due to the fact that with a sufficient amount of frother, any further increase in the amount of 

frother will not significantly improve the concentrate yield. Meanwhile, the results also show that the 

increase in frother dosage is the main reason for the apparent increase in concentrate yield in Fig. 4(a), 

which is also an important reason why frother dosage has a higher degree of importance in the 

prediction model for the full dataset. The relationship between the importance level of the full dataset 

and the other factors in Dataset II did not change significantly except for frother dosage.  

The fraction and ash content of -74 um in the feed are the two factors that rank in the top three in the 

importance results of most models. Flotation is a method of mineral separation based on the differential 

adhesion of hydrophobic and hydrophilic minerals to flotation bubbles. The hydrophobic mineral 

particles adhere to the bubbles and move from the slurry zone to the froth zone, eventually becoming 

the concentrate. It is well known that fine particles (-74 um) have a low probability of collision with 

flotation bubbles due to their fine size and low inertia. In addition, the high specific surface area of the 

fine particles will consume a large amount of the limited flotation chemicals, leaving the coarse particles 

unable to obtain sufficient flotation reagent to mineralise with the bubbles. With the increase of the -74 

um fraction in the feed, the limited amount of reagent has been consumed in large quantities. This 

results in a large loss of coarse particles with good floatability in the flotation concentrate and a 

significant reduction in concentrate yield. In addition, as the ash content of -74 μm increases, a large 

number of fine vein particles present in the slurry will cover the fine coal particles. As a result, the fine 

coal particles are unable to interact with the flotation chemicals and bubbles and are eventually lost in 

the tailings. 

Compared to the amount of foaming agent, the amount of trapping agent was significantly less 

important for concentrate yield and ash, both ranking fifth in all models. This is due to the fact that coal 

particles tend to float naturally and do not require excessive amounts of foaming agent. Feed ash 

content, -74 um content and ash content all reflect to some extent the degree of floatability of the feed. 

Therefore, the characteristics of the feed have a greater influence on the flotation results than the dosage 

of the collector. Also, slurry concentration, agitation rate and aeration were the three factors that had 

the least effect on concentrate yield of all the predictive models, which may be due to the fact that these 

three factors are less controllable in flotation experiments. 

 

Fig. 8. Feature importance results for the flotation concentrate yield using (a) GBDT, (b) CatBoost, (c) LightBGM, 

and (d) XGBoost models 

https://blog.csdn.net/xovee/article/details/120298070
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Fig. 9. Feature importance results for the ash content of the flotation concentrate using (a) GBDT, (b) CatBoost, (c) 

LightBGM, and (d) XGBoost models 

4. Conclusions 

This study effectively evaluated the predictive performance of GBDT, CatBoost, LightGBM, and 

XGBoost for coal flotation results. The main findings are as follows: 

1. The XGBoost model outperformed the others, achieving high prediction accuracy with R² values of 

0.877 and 0.971 for concentrate yield and ash content, respectively. 

2. The low prediction accuracy for concentrate yield below 40% was attributed to the abnormal 

flotation results caused by low flotation reagent dosages. Filtering out this data subset significantly 

improved the model accuracy. 

3. The fraction and ash content of -74 μm particles in the feed were identified as the key factors affecting 

flotation results, emphasizing the importance of feed properties over flotation reagent dosages. 

4. The results indicate that machine learning models based on appropriately dosed flotation chemicals 

could potentially provide accurate online predictions for coal flotation plants, facilitating intelligent 

control and management. 

Acknowledgments 

This research was funded by the National Natural Science Foundation of China (52204296).  

References 

ABKHOSHK, E., KOR, M., REZAI, B., 2010. A study on the effect of particle size on coal flotation kinetics using fuzzy logic. 

Expert Syst. Appl. 37, 5201-5207. 

ALI, D., HAYAT, M.B., ALAGHA, L., MOLATLHEGI, O.K., 2018. An evaluation of machine learning and artificial 

intelligence models for predicting the flotation behavior of fine high-ash coal. Adv. Powder Technol. 29, 3493-3506. 

ARANCIBIA-BRAVO, M.P., LUCAY, F.A., SEPúLVEDA, F.D., CORTéS, L., CISTERNAS, L.A., 2022. Response 

Surface Methodology for Copper Flotation Optimization in Saline Systems. Minerals 12, 1131. 

BU, X., VAHED, A.T., GHASSA, S., CHELGANI, S.C., 2021. Modelling of coal flotation responses based on operational 

conditions by random forest. Int. J. Oil Gas Coal Technol. 27, 457-468. 

BU, X., XIE, G., PENG, Y., CHEN, Y., 2016. Kinetic modeling and optimization of flotation process in a cyclonic microbubble 

flotation column using composite central design methodology. Int. J. Miner. Process. 157, 175-183. 

https://blog.csdn.net/xovee/article/details/120298070


11 Physicochem. Probl. Miner. Process., 60(6), 2024, 196385 

 

BU, X., ZHANG, T., CHEN, Y., XIE, G., PENG, Y., 2020. Comparative study of conventional cell and cyclonic microbubble 

flotation column for upgrading a difficult-to-float Chinese coking coal using statistical evaluation. Int. J. Coal Prep. Util. 

40, 359-375. 

BU, X., ZHOU, S., DANSTAN, J.K., BILAL, M., UL HASSAN, F., CHAO, N., 2024. Prediction of coal flotation 

performance using a modified deep neural network model including three input parameters from feed. Energy Sources 

Part A-Recovery Util. Environ. Eff. 10.1080/15567036.2022.2036272, 1-13. 

CARMONA, P., CLIMENT, F., MOMPARLER, A., 2019. Predicting failure in the U.S. banking sector: An extreme 

gradient boosting approach. Int. Rev. Econ. Financ. 61, 304-323. 

CHEHREH CHELGANI, S., MATIN, S.S., MAKAREMI, S., 2016. Modeling of free swelling index based on variable 

importance measurements of parent coal properties by random forest method. Measurement 94, 416-422. 

CHELGANI, S.C., HOMAFAR, A., NASIRI, H., LAKSAR, M.R., 2024. CatBoost-SHAP for modeling industrial 

operational flotation variables - A "conscious lab" approach. Miner. Eng. 213, 108754. 

CHELGANI, S.C., MATIN, S.S., 2018. Study the relationship between coal properties with Gieseler plasticity parameters by 

random forest. Int. J. Oil Gas Coal Technol. 17, 113-127. 

DU PLESSIS, B.J., DE VILLIERS, G.H., 2007. The application of the Taguchi method in the evaluation of mechanical flotation 

in waste activated sludge thickening. Resour. Conserv. Recycl. 50, 202-210. 

FLORES, V., HENRíQUEZ, N., ORTIZ, E., MARTINEZ, R., LEIVA, C., 2024. Random forest for generating 

recommendations for predicting copper recovery by flotation. IEEE Latin Am. Trans. 22, 443-450. 

GOMEZ-FLORES, A., HEYES, G.W., ILYAS, S., KIM, H., 2022. Prediction of grade and recovery in flotation from 

physicochemical and operational aspects using machine learning models. Miner. Eng. 183, 107627. 

GUNER, M., AKYILDIZ, O., BASARIR, H., KOWALCZUK, P., 2024. Exploring the impact of thiol collectors system on 

copper sulfide flotation through machine learning-driven modeling. Physicochem. Probl. Mineral Pro. 60, 191709. 

LUBISI, T.P., NHETA, W., NTULI, F., 2018. Optimization of Reverse Cationic Flotation of Low-Grade Iron Oxide from 

Fluorspar Tails Using Taguchi Method. Arab. J. Sci. Eng. 43, 2403-2412. 

MA, X., SHA, J., WANG, D., YU, Y., YANG, Q., NIU, X., 2018. Study on a prediction of P2P network loan default based 

on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning. 

Electron. Commer. Res. Appl. 31, 24-39. 

MENG, S., WEN, S., HAN, G., WANG, X., FENG, Q., 2022. Wastewater Treatment in Mineral Processing of Non-Ferrous 

Metal Resources: A Review. Water 14, 726. 

NAZARI, S., CHEHREH CHELGANI, S., SHAFAEI, S.Z., SHAHBAZI, B., MATIN, S.S., GHARABAGHI, M., 2019. 

Flotation of coarse particles by hydrodynamic cavitation generated in the presence of conventional reagents. Sep. Purif. 

Technol. 220, 61-68. 

PAWLISZAK, P., BRADSHAW-HAJEK, B.H., SKINNER, W., BEATTIE, D.A., KRASOWSKA, M., 2024. Frothers in 

flotation: A review of performance and function in the context of chemical classification. Miner. Eng. 207, 108567. 

RAMUDZWAGI, M., TSHIONGO-MAKGWE, N., NHETA, W., 2020. Recent developments in beneficiation of fine and 

ultra-fine coal -review paper. J. Clean Prod. 276, 122693. 

SACHINRAJ, D., KOPPARTHI, P., SAMANTA, P., MUKHERJEE, A.K., 2022. Optimization of Column Flotation for 

Fine Coal Using Taguchi Method. Trans. Indian Inst. Met. 75, 1255-1267. 

SHAHBAZI, B., CHEHREH, C.S., MATIN, S.S., 2017. Prediction of froth flotation responses based on various conditioning 

parameters by Random Forest method. Colloid Surf. A-Physicochem. Eng. Asp. 529, 936-941. 

SUN, X., LIU, M., SIMA, Z., 2020. A novel cryptocurrency price trend forecasting model based on LightGBM. Financ. Res. 

Lett. 32, 101084. 

SUN, Y., BU, X., ULUSOY, U., GUVEN, O., VAZIRI HASSAS, B., DONG, X., 2023. Effect of surface roughness on 

particle-bubble interaction: A critical review. Miner. Eng. 201, 108223. 

VINNETT, L., LEóN, R., MESA, D., 2023. Artificial neural network (ANN) modelling to estimate bubble size from 

macroscopic image and object features. Physicochem. Probl. Mineral Pro. 59, 185759. 

WANG, C., WANG, H., LIU, Y., HUANG, L., 2016. Optimization of surface treatment for flotation separation of polyvinyl 

chloride and polyethylene terephthalate waste plastics using response surface methodology. J. Clean Prod. 139, 866-872. 

WANG, X., BU, X., NI, C., ZHOU, S., YANG, X., ZHANG, J., ALHESHIBRI, M., PENG, Y., XIE, G., 2021. Effect of 

scrubbing medium’s particle size on scrubbing flotation performance and mineralogical characteristics of microcrystalline 

graphite. Miner. Eng. 163, 106766. 

ZHANG, C., ZHANG, Y., SHI, X., ALMPANIDIS, G., FAN, G., SHEN, X., 2019. On Incremental Learning for Gradient 

Boosting Decision Trees. Neural Process. Lett. 50, 957-987. 



12 Physicochem. Probl. Miner. Process., 60(6), 2024, 196385 

 

ZHANG, L., JáNOŠíK, D., 2024. Enhanced short-term load forecasting with hybrid machine learning models: CatBoost and 

XGBoost approaches. Expert Syst. Appl. 241, 122686. 

ZHAO, B., HU, S., ZHAO, X., ZHOU, B., LI, J., HUANG, W., CHEN, G., WU, C., LIU, K., 2022. The application of 

machine learning models based on particles characteristics during coal slime flotation. Adv. Powder Technol. 33, 103363. 

Supporting material 

 

Fig. R1. Feature importance of concentrate yield prediction model of full dataset 

 

Fig. R2 Feature importance of concentrate ash content prediction model of full dataset 

https://blog.csdn.net/xovee/article/details/120298070
https://blog.csdn.net/xovee/article/details/120298070

