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Abstract: Bubble size measurements in aerated systems such as froth flotation cells are critical for 
controlling gas dispersion. Commonly, bubbles are measured by obtaining representative photographs, 
which are then analyzed using segmentation and identification software tools. Recent developments 
have focused on enhancing these segmentation tools. However, the main challenges around complex 
bubble cluster segmentation remain unresolved, while the tools to tackle these challenges have become 
increasingly complex and computationally expensive. In this work, we propose an alternative solution, 
circumventing the need for image segmentation and bubble identification. An Artificial Neural 
Network (ANN) was trained to estimate the Sauter mean bubble size (D32) based on macroscopic image 
features obtained with simple and inexpensive image analysis. The results showed excellent prediction 
accuracy, with a correlation coefficient, R, over 0.998 in the testing stage, and without bias in its error 
distribution. This machine learning tool paves the way for robust and fast estimation of bubble size 
under complex bubble images, without the need of image segmentation. 
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1. Introduction 

Bubble size is a crucial factor in froth flotation, affecting fundamental phenomena such as bubble-
particle interaction (Ahmed & Jameson, 1985; Dai et al., 2000; Tao, 2005; Wang et al., 2016) and froth 
stability (Calvert & Nezhati, 1987; Cho & Laskowski, 2002; Geldenhuys & McFadzean, 2019; Mesa et al., 
2020). These phenomena, in turn, have a substantial impact on flotation kinetics and overall 
performance. Generally, small bubbles are preferred as they increase the available air-liquid interface, 
facilitating particle attachment. Bubble size can be controlled in flotation equipment by altering the 
design of the injector/agitator mechanism (Gorain et al., 1995, 1999; Harris et al., 2005; Kracht et al., 
2008; Martín et al., 2008; Mesa & Brito-Parada, 2020; Mesa et al., 2020), and by varying the operating 
conditions, such frother dosage, air flowrate and impeller speed (Amini et al., 2013; Arancibia-Bravo et 
al., 2019; Azgomi et al., 2007; Cho & Laskowski, 2002; Grau et al., 2005). 

The importance of bubble size distribution in flotation has motivated the development of several 
measurement methodologies (Couto et al., 2009; Junker, 2006; Kracht & Moraga, 2016; Lichti & Bart, 
2018; Prasser et al., 2001), among which the most widely used corresponds to the utilization of bubble 
viewer apparatuses (Chen et al., 2001; Grau & Heiskanen, 2002; Hernandez-Aguilar et al., 2002; Vazquez 
et al., 2005). This methodology entails the sampling of bubbles from the pulp using a sampling tube into 
a viewing chamber, where bubbles are photographed. The images are analyzed using image analysis 
tools to identify, segment and measure each individual bubble (Bailey et al., 2005; Kracht et al., 2013; 
Mesa et al., 2022; Vinnett et al., 2018; Vinnett et al., 2020). Although the strategy of bubble segmentation 
and identification has been successful, there persist challenges associated with: (i) the computational 
cost of complex segmentation algorithms; (ii) the correct and unbiased segmentation of complex bubble 
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clusters (Karn et al., 2015; Kracht et al., 2013; Ma et al., 2014; Vinnett, 2023); and (iii) the identification of 
large non-convex bubbles, in the absence of stereological information. Bubble identification from 
automated image analysis has proven to be erratic for industrial conditions (Vinnett, 2023), especially 
under the presence of large and small bubbles in the same population. 

In addition to conventional techniques such as Watershed and Hough transforms, machine learning 
has emerged as a valuable tool for enhanced bubble segmentation and identification. Among the 
different machine-learning techniques used for image-analysis problems in mineral processing, 
Convolutional Neural Networks (CNN) have been extensively studied. CNNs have proven to be 
superior to traditional computer vision methods for image segmentation, achieving high resolution (He 
et al., 2020; Hessenkemper et al., 2022). Various CNN approaches have been explored for bubble 
segmentation, such as the use of region-based CNNs like Faster-RCNN (Haas et al., 2020), sliding 
window-based CNN (Poletaev et al., 2020), and the implementation of segmentation masks through 
Mask RCNN, which not only classifies but also assigns each pixel to individual bubble objects (Cui et 
al., 2021; Hessenkemper et al., 2022; Kim & Park, 2021; Wang et al., 2023). Although significant progress 
made with CNN-based techniques has been made in recent years, challenges persist in segmenting very 
complex images, such as those obtained in industrial settings, which are typically subject to wide 
bubble-size distributions, high gas content, cloudiness due to the presence of solid particles, and 
lighting issues.  

In many mineral processing applications, precise segmentation for the identification of each 
individual bubble may not be necessary. Instead, froth flotation models often use average metrics such 
as the Sauter mean diameter (D32 = Σd b,i3/Σd b,i2) to correlate gas dispersion with metallurgical 
performance. Therefore, alternative approaches to directly estimate D32 can suffice for practical 
purposes. Innovative alternative strategies have been proposed, using algorithms that do not focus on 
segmenting and identifying individual bubbles, but instead strive to estimate the bubble size 
distribution or its Sauter mean for the entire image. For instance, Kracht et al. (2013) proposed a 
stochastic method using image background covariance for bubble size distribution (BSD) 
determination, which was validated in laboratory tests and simulations. Similarly, Vinnett and Alvarez-
Silva (2015) established a linear model connecting shadow percentage in binary bubble images to D32, 
using varying gas rates. The latter was refined by Vinnett, Cornejo, et al. (2022), where a linear model 
was determined between D32 and over 12 image properties obtained automatically, without bubble 
segmentation, resulting in a fast and accurate estimation of the Sauter diameters in the range of 
1.3–6.7 mm. 

This work seeks to establish a connection between traditional and modern approaches to estimating 
bubble size, employing an Artificial Neural Network (ANN) to autonomously determine relationships 
between image properties and the Sauter mean diameter of bubble populations. Although several image 
analysis applications based on CNNs have proven to outperform ANNs (Bu et al., 2022), ANNs are still 
powerful tools in parameter-based modelling when there exist strong levels of association between 
input and output variables (Bishop, 2006). ANNs are well-suited for processing structured information, 
such as tabular data, with fully connected layers, offering versatility across various data types. Artificial 
neural networks have been extensively used in mineral processing research. However, the application 
of ANN to assess gas dispersion in flotation has been rather scarce, and mainly employed in the 
development of soft sensors from operating conditions, rather than from image properties. For instance, 
Massinaei and Doostmohammadi (2010) applied an ANN to predict the bubble surface area flux (SB), 
using the superficial gas velocity (JG), frother dosage, and solid content as predictors. Similarly, Bhunia 
et al. (2015) used an ANN to estimate the gas holdup in a flotation tank based on the JG, solid content, 
frother type and slurry feed rate. 

In this work, however, the ANN was not directly used as a soft sensor, but as a tool to streamline the 
analysis of bubble images. To the authors' knowledge, this is the first ANN to characterize bubble size 
from macroscopic images and object features for practitioners who use bubble viewers along with image 
analysis to characterize gas dispersion. By avoiding the challenges of complex segmentation algorithms, 
we aim to offer a practical solution for quickly and accurately estimating D32 from bubble images using 
machine learning, given an adequate training database. 
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2. Materials and Methods 

The experimental setup and methods associated with the bubble acquisition using a McGill bubble size 
analyser, as well as their initial analysis using a semi-automated tool, are well described by Vinnett, 
Cornejo, et al. (2022). A summary is provided here for completeness.  

The D32 values obtained with the semi-automated tool was used as ground truth. The image 
descriptors obtained in a fully automated image analysis step were randomly divided into training and 
testing datasets for building and training an Artificial Neural Network capable of estimating D32. Fig. 1 
graphically describes the methodology used in this work. 

 
Fig. 1. Diagram of the data flow and estimation methodology used in this work. The semi-automated system was 
used to obtain the ground truth for D32. An artificial neural network was trained to estimate the D32 based on the 

object properties obtained from an automated image analysis without segmentation. 

2.1. Experimental setup 

Bubble size measurements were conducted in a laboratory-scale flotation cell that replicates a cross-
section of an industrial machine, as described in Vinnett et al. (2022) (see Fig. 2). Bubble sampling was 
performed using a McGill bubble size analyser (MBSA) (Hernandez-Aguilar et al., 2002). The rising 
bubbles were photographed at a rate of one frame per second. All measurements were taken over 3 
minutes at a resolution of 0.056 mm/pixel. 

Four types of frothers were examined: methyl isobutyl carbinol (MIBC, purity ≥ 98.5% by weight), 
AeroFroth® 70 (Cytec, Woodland Park, NJ, USA), OrePrep® F-507 (Cytec, Wood-land Park, NJ, USA), 
and Flotanol® 9946 (Clariant Mining Solutions, Louis-ville, KY, USA). AeroFroth® 70 contains MIBC (≥ 
98% by weight) and diisobutyl ketone (≤ 2% by weight) (Solvay, 2018), OrePrep® F-507 contains glycol 
and other non-hazardous components (Saavedra Moreno et al., 2022), and Flotanol® 9946 corresponds 
to a 2-ethyl hexanol distillation bottom (Arends, 2019). Table 1 details the experimental conditions, 
including frother concentrations and superficial gas rates. The MIBC experiments were conducted at 
two locations. At JG = 2.5 cm/s, some churn-turbulent conditions were detected and removed from the 
analysis based on the methodology reported by Vinnett, Yianatos, et al. (2022). For AeroFroth® 70, 
OrePrep® F-507, and Flotanol® 9946, 5 repetitions were conducted at JG = 0.4 cm/s, and 3 at JG = 1.2 
cm/s and 2.0 cm/s. No repetitions were conducted at JG = 0.8 cm/s and 1.6 cm/s. In all measurements, 
the MBSA was filled with conditioned water at the same frother concentration as the flotation cell to 
prevent bubble coalescence. Two hundred and seventy-nine experimental conditions were run and 
analyzed. 

2.2. Semi-automated image processing 

To obtain the ground truth for the Sauter mean bubble size, the images were analysed using a traditional 
identification and segmentation method, along with a manual correction step. To this end, the bubble 
size analysis was performed using the semi-automated tool introduced by Vinnett et al. (2009) and 
updated by Vinnett (2023), based on the Image Processing Toolbox of MATLAB (11.4, The MathWorks 
Inc., Natick, MA, USA). A field of view measuring 45 × 35 mm was selected for image analysis.  
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Fig. 2. Two-dimensional flotation cell and installation of the McGill bubble size analyser 

(Vinnett, Cornejo, et al., 2022) 

Table 1. Experimental conditions 

Type of Frother Frother Concentrations, ppm Superficial Gas Rates, cm/s 
MIBC 0, 2, 4, 8, 16 0.5, 1.0, 1.5, 2.0, 2.5 

AeroFroth® 70 0, 2, 4, 8, 16, 32 0.4, 0.8, 1.2, 1.6, 2.0 
OrePrep® F-507 0, 2, 4, 8, 16, 32 0.4, 0.8, 1.2, 1.6, 2.0 
Flotanol® 9946 0, 2, 4, 8, 16, 32 0.4, 0.8, 1.2, 1.6, 2.0 

In this semi-automated tool, the images are initially converted into binary representations, where 
isolated spheres and ellipsoids are automatically identified based on solidity. Objects with low solidity 
are then automatically segmented/identified using Watershed and Hough transforms. Individual 
bubble sizes can be estimated as equivalent ellipsoid diameters from the object axes. 

Manual processing corrected false positives in the fully automated image analysis and allowed for 
the characterization of non-identified bubbles. This procedure prevented biases caused by removing 
bubbles from the analysis. Manual and automated segmentation assumed that the observed clusters in 
the region of interest are mostly justified by collisions in the MBSA chamber, rather than bubble 
coalescence. These collisions are intensified by the deflector glass of the MBSA, which aids the bubbles 
to be photographed in a 2D plane (Vinnett, Urriola, et al., 2022). It should be noted that other approaches 
may have been used to define the ground truth (e.g., synthetic bubbles). However, the semi-automated 
approach presented here has proven to be robust in the bubble size characterization at both laboratory 
and industrial scales (Vinnett, 2023). The latter being more challenging due to the higher probability of 
photographing cap-shaped bubbles at higher superficial gas rates. 

The D32 values obtained from this semi-automated method were used as the ground truth to evaluate 
the predictive ability of the ANN to estimate bubble size. A subset of 180 images per experimental 
condition was randomly chosen, processing a minimum of 1500 bubbles per test. However, at least 10 
images were processed in all cases. This limitation for the number of processed images was especially 
defined for conditions with high gas hold-up.  

All images were analysed when operating the cell without frother. For detailed information on the 
semi-automated procedure, please refer to Vinnett (2023). Fig. 3 illustrates an image processed by the 
semi-automated approach, in which bubbles highlighted by their border (or best ellipse) were 
automatically detected. Bubbles highlighted by crosses were manually identified. 
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Fig. 3. Example of an image processed by the semi-automated procedure 

2.3. Region properties and their association with bubble size 

The region properties of the binary images analysed by the fully automated method were obtained. 
These properties were used as inputs in the ANN modelling to predict the Sauter diameter. An example 
of an analysed image is shown in Fig. 4(a), from which the object and region properties summarized in 
Table 2 were calculated.  

For all processed images, the median and different indicators of variability were estimated for the 
evaluated properties (e.g., circularity, solidity, aspect ratio, perimeter). Most of the object features were 
obtained from the Image Processing Toolbox of MATLAB (11.4, The MathWorks Inc., Natick, MA, 
USA), using the regionprops function. Circularities, aspect ratios, eccentricities, perimeters, solidities, 
equivalent diameters, and the number of objects per mm2 were obtained from this tool.  

The spatial bandwidths and the shadow fractions were also calculated for each processed image. The 
spatial bandwidth indirectly indicates the average pulse width generated by the black pixels. In the 
example of Fig. 4(a), the pulses are related to the disturbances of bubbles over the grey line. For the 
signals associated with these trains of pulses, the bandwidth was obtained at −20 dB with respect to the 
peak in the power spectral density, as illustrated in Fig. 4(b) (Vinnett et al., 2018). The shadow fraction 
corresponds to the ratio between the overall area of the black regions with respect to the area of the 
entire region of interest. 

Table 3 indicates the nomenclature for each studied feature. The median along with one variability 
index per object or region property were used as descriptors to estimate D32. The variability index per 
feature was chosen from the relative standard deviation (subscript RSD), relative interdecile range 
(subscript RIDR), relative interquintile range (subscript RIQQR), and relative interquartile range 
(subscript RIQR), based on the highest level of association with the D32 values (Vinnett, Cornejo, et al., 
2022). 

Table 2. List of studied region and object properties. 

Property Variable Symbol Statistical Index 
Shadow Fraction SF 

Median 
Relative Standard Deviation 
Relative Interdecile Range 

Relative Interquintile Range 
Relative Interquartile Range 

Circularity, 𝟒𝝅	𝐚𝐫𝐞𝐚 𝑷𝟐⁄  C 
Aspect Ratio, major axis length/minor axis length AR 

Eccentricity E 
Perimeter, mm P 

Solidity S 
Equivalent Diameter, )𝟒	𝐚𝐫𝐞𝐚 𝝅⁄ , mm ED 
Number of Objects per mm2, 1/mm2 N 

Spatial Bandwidth, pxl/mm BW 
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Fig. 4. (a) Example of binary image, and (b) normalized power spectral density and bandwidth estimation 

(Vinnett et al., 2018) 

2.3. Artificial neural network 

An Artificial Neural Network was employed to establish relationships between image properties of 
Table 2 and the Sauter mean diameter of the bubble populations. The values for the D32 ground-truth 
corresponded to those obtained from the semi-automated procedure. The network architecture 
comprised a single hidden layer housing 8 neurons. The input layer incorporated 18 image and object 
descriptors: the median and a measure of dispersion for the 9 properties listed in Table 2. The 
architecture of the ANN is conceptualised in Fig. 5. 

The activation function Rectified Linear Unit (ReLu) (Schmidhuber, 2015) was applied between the 
input and the hidden layer, fostering non-linearity for modelling purposes. A Linear activation function 
was utilized for the output layer to obtain the D32 values. Prior to training, all descriptors underwent 
standardization. The network weights were initialized using the He uniform method (He et al., 2015). 
The Adam optimizer (Kingma & Ba, 2014), with a learning rate of 0.001, was employed to minimize the 
mean squared error in the training stage. The network and learning settings were defined in a previous 
grid search stage. 

For training and evaluation, the dataset was randomly split, with 70% of the data (195 descriptors-
D32 datasets) being used for training the ANN and the remaining 30% (84 descriptors-D32 datasets) 
reserved for testing its predictive capacity. The ANN underwent training for 300 epochs with a batch 
size of 10. The training and testing procedures were repeated 1000 times, randomly selecting the 70/30 
training-testing subsets each time, to evaluate the robustness of the ANN. Thus, the sensitivity of the 
ANN results to influential observations in the training process was assessed. All ANN algorithms were 
implemented in Python 3 (Van Rossum, G., & Drake, F. L., Scotts Valley, CA, USA). 

2.5. Blind tests 

Blind tests were performed, assessing the response of the ANN to new data with considerably different 
conditions or settings to the training datasets. The objective of this analysis was the evaluation of the 
ANN model’s robustness for extending its application in different conditions.  

Two “external” datasets were evaluated. The first one corresponds to 9 experimental sets obtained 
in a 85.5 cm × 9.8 cm (L × D) cylindrical column operated with one porous sparger. Moreover, these 
experiments were performed using an alternative frother to those described in Table 1, namely Flottec 
F120-20, with a purity of 99.5% by weight (Flottec, 2015). The bubbles were generated at JG of 0.4, 1.2 
and 2.0 cm/s, and with frother concentrations of 0, 4 and 32 ppm. Bubble images were obtained using 
the same methodology as that described in Section 2.1.  

The second dataset corresponds to industrial data from 15 mechanical cells corresponding to rougher 
(42.5 m3 and 127 m3), first cleaner (28. 3 m3 and 42.5 m3) and scavenger (14.2 m3 and 28. 3 m3) stages, 
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and 4 industrial columns (a second cleaner stage, 2 m × 8 m × 10 m), corresponding to 19 different 
operating conditions. All industrial data were obtained in a Cu/Mo Chilean concentrator. 

These datasets were analysed with the automatic tool to obtain the object properties (e.g., Fig. 4) 
required to predict the D32 values from the ANN model. These datasets were not included in the ANN 
training process. The semi-automated tool (Section 2.2) was also used to determine the ability of the 
automated ANN to estimate D32 values comparable to those obtained from a tool that did not remove 
irregular bubbles nor bubbles in clusters. 

 
Fig. 5. ANN architecture: an input layer with 18 neurons, a hidden layer with 8 neurons, and an output layer with 

the D32 estimation 

3. Results and discussion 

3.1.  ANN training, validation, and comparison with a linear model 

The ANN was trained and tested, using 70% of the data for the former and 30% for the latter. The 
semi-automated D32 results were used as a reference (ground truth) for comparison purposes. To 
evaluate the robustness of the network, 1000 training-testing subsets were randomly chosen and 
assessed. From these 1000 results, the network ability to estimate D32 was evaluated, using the 
correlation coefficient, R, as an indicator. Fig. 6 shows the cumulative distribution function of the R 
values obtained from the testing subsets, compared to those obtained from the linear model proposed 
by Vinnett, Cornejo, et al. (2022). Although both models have an excellent response, the ANN 
consistently outperforms the linear model, exhibiting R values mostly greater than 0.995, which 
indicates a suitable generalization of the D32 estimations. Only 3% of the testing subsets presented an R-
value lower than 0.993 with the ANN modelling, indicating the potential of this tool to characterize D32.   

Fig. 7 illustrates the modelling performance for the training and testing subsets, considering the 
percentiles 2.5 [Fig. 7(a)], 50 [Fig. 7(b)] and 97.5 [Fig. 7(c)] for the coefficient of correlation obtained from 
the latter subset. The ANN allowed for an adequate description of the training and testing subsets. Even 
at low percentiles for the R value in the testing procedure [Fig. 7(a)], the network was able to represent 
the D32 variability for datasets not involved in the training stage.  

Results from Fig. 7 proved the low sensitivity of the ANN model to different training-testing subsets, 
which again highlights the robustness of the model structure of Fig. 5. For the three testing conditions 
depicted in Fig. 7, the D32 errors with respect to the semi-automated D32 estimations were analysed for 
the automated image processing and the ANN modelling. These D32 errors were calculated by 
subtracting the semi-automated D32 values from the automated image analysis and ANN D32 estimates. 

Fig. 8 presents the cumulative distribution functions of the D32 errors, showing the results associated 
with the percentiles 2.5 [Fig. 8(a)], 50 [Fig. 8(b)] and 97.5 [Fig. 8(c)] of the R values obtained when testing 
the network. The variability of the D32 errors obtained from the automated and ANN approaches were  
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Fig. 6. Comparison of the cumulative distribution functions of the coefficient of correlation from the testing 

subsets: the ANN model versus the linear model proposed by Vinnett, Cornejo, et al. (2022) 

 
Fig. 7. Modelling performance for three randomly chosen training-testing subsets. Experimental conditions that 
led to the (a) 2.5, (b) 50, and (c) 97.5 percentiles for correlation coefficient in the testing subsets. The datapoints 

represent the experimental data, whereas the continuous line corresponds to the ideal trend y = x 
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(a) 

 

(b) 

  

(c) 

  

Fig. 8. Cumulative distribution functions of the D32 errors from the automated image processing and the ANN 
estimations. Experimental conditions that led to the (a) 2.5, (b) 50, and (c) 97.5 percentiles for correlation 

coefficient in the testing subsets 

comparable in magnitude. However, biased results were obtained from the automated image analysis, 
with error distributions shifted towards positive values in all cases. Thus, the automated image 
processing overestimated the D32 values despite the high coefficient of correlation with respect to the 
semi-automated estimations (R = 0.993) (Vinnett, 2023). Conversely, non-biased results were obtained 
from the ANN for the testing subsets. 

Table 3 presents the 95% confidence intervals of the mean of the D32 errors from the automated 
image processing and ANN estimations, for the three conditions shown in Fig. 8. A consistent positive 
bias was obtained from the automated image analysis. This bias was mainly justified by the presence of 
false-positives at D32 values lower than 3.0 mm, which were attributed to misidentified clusters as single 
bubbles. As the 95% confidence intervals of the mean for the D32 errors crossed zero in all cases, non-
significant bias was observed with the ANN modelling. This result implied that the model structure of 
Fig. 5 allowed for better results than those obtained from automated image analysis, given a 
representative D32 database and an adequate set of descriptors to train the network. 

3.2. Blind test with laboratory- and industrial-scale data 

Two blind tests were performed, in which the previously trained ANN was tested with lab-scale and 
industrial-scale datasets with conditions that considerably differed from the training stage (see Section 
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2.5). Fig. 9 presents the D32 estimations, showing that the ANN was able to detect the bubble size 
variability for datasets beyond those employed for training.  

For the lab-scale flotation column operated with the F120-20 frother, the coefficient of correlation 
between the measured and predicted D32 values resulted R = 0.981, whereas an R value of 0.93 was 
obtained from industrial data including mechanical cells and flotation columns. Higher uncertainties 
are observed due to the difference in the object features measured in the different flotation systems. In 
addition, some bias was obtained, with the ANN overestimating the Sauter diameter for the industrial 
data and underestimating the D32 values for the lab-scale flotation column. The presence of solids in the 
industrial images may also have affected the accuracy and precision of the D32 predictions.  

It should be noted that automated image analysis from conventional tools has led to erratic responses 
for industrial datasets as reported in (Vinnett, 2023). To the authors' knowledge, no automated image 
analysis tools have proven to be robust in the analysis of non-ideal bubble images, and further 
developments must be made on this subject. 

Table 3. Confidence intervals of the mean of the D32 errors at 95% level obtained from the automated and ANN 
estimations. Experimental conditions that led to the 2.5, 50 and 97.5 percentiles for correlation coefficient in the 

testing subsets 

D32 Errors 
Percentiles for the Correlation Coefficient in the Testing Datasets, ANN 

2.5 50 97.5 
Automated D32 Estimation 0.068 – 0.118 0.040 – 0.096 0.030 – 0.098 

ANN D32 Estimation −0.023 – 0.044 −0.031 – 0.012 −0.029 – 0.010 
 

 

Fig. 9. Blind test: modelling performance using datasets with different characteristics to the training 
datasets. The red squares represent the results obtained using laboratory-scale data in a flotation column operated 
with a different frother (Flottec F120-20). The blue circles represent the results obtained from industrial-scale data. 

The continuous line corresponds to the ideal trend y = x 

The results obtained in this study established the efficacy of our ANN model in achieving accurate 
and unbiased estimations of bubble size for a specific flotation system, relying solely on macroscopic 
image and object features. This model circumvents the need for algorithms for complex cluster 
segmentation, streamlining the Sauter mean estimation process. Moreover, results from Fig. 9 show the 
potential for using this ANN approach to estimate D32 in cases outside the training data, including the 
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analysis of complex industrial cases. The strong level of association between D32 and the macroscopic 
image and object properties reported by Vinnett, Cornejo, et al. (2022) made the proposed ANN suitable 
to estimate bubble size in the studied flotation systems. 

Future work should focus on expanding the training database, incorporating images as ground 
truth from diverse laboratory, pilot, and industrial scenarios at different operating conditions. It is 
expected that a synergy between machine learning approaches can be leveraged, utilising the training 
masks generated by segmentation algorithms such as Mask R-CNN as ground truths. This database 
holds the promise of expediting the accurate estimation of bubble size by simply extracting macroscopic 
image features, in which bubble identification and object segmentation will only be required in the 
training stages. 

4. Conclusions 

This study introduced an Artificial Neural Network (ANN) model for the efficient and reliable 
estimation of the Sauter mean diameter (D32) in flotation. In contrast to conventional methodologies, 
this approach uses basic image analysis to obtain macroscopic image and object properties, without the 
need of complex algorithms for image segmentation. Two hundred and seventy-nine experimental 
conditions were used to train and test the ANN, relating different image properties with the expected 
D32 values. The latter were obtained from a semi-automated procedure to avoid biases caused by 
misidentified bubbles. From the D32 estimations and comparisons, the following conclusions were 
obtained: 
• The ANN was remarkably robust, with high correlation coefficients in the testing stage 

(R > 0.998) across diverse training-testing subsets. Its low sensitivity to variations in the training-
testing selections highlights its efficacy in capturing D32 variability, even for non-observed datasets 
during training. 

• Compared to automated image processing, the ANN showed superior performance, providing non-
biased and more accurate D32 estimates from the testing subsets. 

• The positive bias observed with the automated approach was attributed to misidentified clusters, 
emphasizing the ANN potential for overcoming challenges associated with segmentation 
algorithms. 

• The predictive capacity of the ANN was evaluated, estimating D32 values for laboratory and 
industrial conditions that were not used in the training-testing stages. Although some bias was 
observed, the results proved the potential of the proposed approach to estimate D32 at different 
scales. The need for more diverse training databases was highlighted from this analysis. 
These findings offered a practical and swift solution for D32 estimation, addressing critical issues in 

bubble size characterization. Further exploration of ANN applications is encouraged, emphasizing the 
need for extensive training databases under diverse operational conditions and experimental settings. 
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