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Abstract: This paper evaluates the capacity of an automated algorithm to detect bubbles and estimate 
bubble size (Sauter mean diameter, D32) from images recorded in industrial flotation machines. The 
algorithm is previously calibrated from laboratory images. The D32 results are compared with semi-
automated estimations, which are used as "ground truth". Although the automated algorithm is reliable 
to estimate bubble size at laboratory scale, a significant bias is observed from industrial images for 
D32 > 3.0-4.0 mm. This uncertainty is caused by the presence of small and large bubbles in the same 
population, with large bubbles forming complex clusters and being observed incomplete, limited by the 
region of interest. Flotation columns are more prone to this condition, which hinders the estimation of 
Sauter diameters. The results show the need for bubble size databases that include industrial images. 
As several image processing tools are currently available, software calibration from ideal bubble images 
(synthetic or from laboratory rigs) will mostly lead to biased D32 estimations in industrial flotation 
machines. 
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1. Introduction 

Froth flotation remains as one of the most versatile separation technique, essential for processing 
complex and low-grade ores (Wills and Finch, 2016). Gas dispersion is a critical parameter in flotation 
as it significantly impacts particle-bubble interactions and froth stability, directly influencing the 
flotation rate constant and overall performance (Gorain, 1998; Wills and Finch, 2016; Barbian et al., 2006). 
One of the variables defining gas dispersion is bubble size, which is typically characterized by the Sauter 
diameter, 𝐷!" = ∑𝑑#,%! ∑𝑑#,%"% , with dB, i representing the diameter of the i-th bubble of a sample. Smaller 
bubbles increase the overall bubble surface, which improves the collection efficiency (Tao, 2005). 
Optimal control of bubble size requires adequate gas injection systems and operating conditions, such 
as frother dosage, superficial gas rate, and impeller speed (Nesset, 2011). 

Several methods to estimate bubble size have been proposed in flotation literature. Conductivity-
based technologies have shown suitable results in two-phase systems; however, the measurement 
quality significantly degrades in industrial systems (Chen et al., 2001). The UCT (University of Cape 
Town) bubble size analyser has been claimed to obtain a suitable overall performance, using a capillary 
sampler (Randall et al., 1989). Nevertheless, biased results have been reported due to large bubbles can 
break inside the capillary tube (Grau and Heiskanen, 2002). One of the most widely used technologies 
to measure bubble size in flotation consists of bubble viewers for sampling combined with image 
processing tools (Rodrigues and Rubio, 2003; Hernandez-Aguilar et al., 2002; Malysa et al., 1999). Bubble 
viewers allow the bubbles to be sampled from the collection zone, which are photographed in a 2D 
plane to reduce errors related to variable depth of field. The images are processed to detect bubbles and 
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estimate bubble size distributions (BSD) and D32 values (Bailey et al., 2005; Mesa et al., 2022). The bubble 
viewers are typically compatible with plant conditions, which has expanded their use in hydrodynamic 
assessment at large scale. However, the image processing tools have mostly been designed and 
calibrated from laboratory images, and their performance from industrial data have been a concern 
among flotation practitioners due to uncertainties caused by the misidentification of irregular-shaped 
bubbles and complex clusters (Karn et al., 2015; Ma et al., 2014; Riquelme et al., 2013). 

In recent years, machine learning and artificial intelligence (AI) have been considered attractive 
techniques for automated and accurate measurements of bubble size (Haas et al., 2020; Hessenkemper 
et al., 2022). However, these technologies present inherent limitations. For example, the need for 
extensive training datasets, which must incorporate as many operating conditions as possible to 
effectively segment complex clusters and accurately identify non-convex bubbles. Synthetic images 
have also been used to train learning machines (Chen et al., 2023; Poletaev et al., 2016); however, these 
images have been highly idealized, not representing industrial conditions typically observed in froth 
flotation. 

Bubble size measurements at industrial scale face significant challenges due to the presence of solids, 
variable lighting, access limitations for bubble sampling, and uncertainties on the operating conditions. 
In addition, industrial bubble size distributions are more prone to be heterogeneous compared to those 
observed under controlled conditions. This paper illustrates the limitations in D32 estimations at 
industrial scale, when automated image-processing algorithms are employed in the characterization, 
and whose parameters (thresholds) are defined from a successful performance using ideal images. The 
need for industrial databases that incorporate representative bubble images and reliable bubble size 
estimations is briefly discussed. 

2. Materials and methods 

2.1. Experimental procedure at laboratory scale 

Bubble size was measured in the laboratory-scale flotation cell shown in Fig. 1, which emulated a slice 
of a forced-air industrial machine with a 140 × 140 cm cross-section and a width of 15 cm. The air was 
fed from 24 porous spargers and controlled by a needle valve. The McGill bubble size analyser (MBSA) 
described by Gomez and Finch (2002) was used for bubble sampling and image recording. The MBSA 
was initially filled with conditioned water, with the same frother concentration as in the flotation cell. 
The bubbles were photographed in a 2D plane with a Teledyne Dalsa video camera at a resolution of 
0.056 mm/pxl.  

Methyl isobutyl carbinol (MIBC), AeroFroth® 70 (Cytec, USA), OrePrep® F-507 (Cytec, USA), and 
Flotanol® 9946 (Clariant Mining Solutions, USA) were used in the bubble size characterizations. Frother 
concentrations of 0, 2, 4, 8, and 16 ppm were assessed for all types of frothers, whereas 32 ppm was also 
assessed for AeroFroth® 70, OrePrep® F-507, and Flotanol® 9946. The JG values were set to 0.5, 1.0, 1.5, 
2.0, and 2.5 cm/s for MIBC, and to 0.4, 0.8, 1.2, 1.6, and 2.0 cm/s for the rest of the frothers. All MIBC 
tests were run at two locations. Five repetitions were conducted at JG = 0.4 cm/s, and three at 
JG = 1.2 cm/s and JG = 2.0 cm/s. No repetitions were conducted at JG = 0.8 cm/s and JG = 1.6 cm/s. 
Table 1 summarizes all experimental conditions. At JG = 2.5 cm/s, some churn-turbulent conditions 
were detected and removed from the analysis according to the procedure described by Vinnett et al. 
(2022b). As a result, 279 gas dispersion tests were analysed. 

2.2. Experimental procedure at large scale 

A similar procedure was employed at industrial scale. The bubble size measurements were conducted 
in mechanical flotation cells (self-aerated and forced air) and flotation columns from different 
concentrators. One hundred and sixty-eight datasets were analysed, with sixty-seven of them 
corresponding to measurements in flotation columns. The sampling tube of the MBSA was immersed 
about 15–30 cm below the pulp–froth interface to capture bubbles entering the froth. The chamber was 
fully filled with process water and a digital video camera (Canon GL2) was used for image acquisition, 
at a sampling rate of 30 frames per second. The MBSA was completely sealed to avoid possible leaks in 
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the industrial measurements. For further details on the experimental procedure at industrial scale, 
please refer to Vinnett et al. (2012). 

 
Fig. 1. Two-dimensional flotation cell and installation of the McGill bubble size analyser (Vinnett et al., 2022a) 

Table 1. Experimental conditions at laboratory scale 

Type of Frother Frother Concentrations, ppm Superficial Gas Rates, cm/s 
MIBC 0, 2, 4, 8, 16 0.5, 1.0, 1.5, 2.0, 2.5 

AeroFroth® 70 0, 2, 4, 8, 16, 32 0.4, 0.8, 1.2, 1.6, 2.0 
OrePrep® F-507 0, 2, 4, 8, 16, 32 0.4, 0.8, 1.2, 1.6, 2.0 
Flotanol® 9946 0, 2, 4, 8, 16, 32 0.4, 0.8, 1.2, 1.6, 2.0 

2.3. Image processing 

For each experimental condition, a subset of the recorded images was randomly chosen, analysing more 
than 1500 bubbles per test. However, a minimum of 10 images were processed, which was specially 
defined for conditions with high gas concentrations. All images were analysed in laboratory tests 
operated at no frother. The images were first automatically processed to identify bubbles and estimate 
their size. The image-processing tool was developed in Matlab (The MathWorks, USA). The algorithm 
described by Vinnett et al. (2020) was improved and employed in the automatic detection. The new 
hierarchical approach consisted of the following steps: 

(i) Image binarization. 
(ii) Bubble detection based on solidity and estimation of bubble axes considering the ellipse that 

has the same normalized second central moments as those generated by the object. 
(iii) The detected bubbles in the previous step were removed from the binary images. 
(iv) Watershed segmentation and object detection based on ellipse fitting. In the latter, the approach 

reported by Fitzgibbon et al. (1996) was used. Step (iii) was repeated, and subsequently, steps 
(ii) and (iii) were repeated. 

(v) Circle detection by Hough Transform was performed for spherical bubbles not detected 
previously. Step (iii) was repeated, and subsequently, steps (ii) and (iii) were again repeated. 

The size of each identified bubble was estimated as an equivalent ellipsoid diameter. Table 2 
summarizes the thresholds for the bubble identification and size estimation. These values were obtained 
from an overall analysis of laboratory images. The detection and estimation thresholds were upgraded 
with respect to the solution presented by Vinnett et al. (2020), taking the new hierarchical algorithm into 
consideration. Although the thresholds were not optimized for each experimental condition, they 
allowed for an adequate trade-off between successfully bubble detection and the number of 
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misidentified bubbles. Similarly, the thresholds for large-scale measurements approached those 
obtained from laboratory measurements. 

Table 2. Thresholds in the automatic bubble detection and size estimation. 

Algorithm Type of Threshold Threshold Value 
Solidity, step(ii) Minimum value for bubble detection 0.93 

Ellipse fitting, step (iv) Coefficient of Correlation, bubble boundary 0.93 
Solidity, steps (iv) and (v) Minimum value for bubble detection 0.90 
Circle detection, step (v) Threshold to define edge pixels of circles 0.66 

The automated image analysis was complemented by manual processing. Bubbles whose axes were 
erroneously estimated were first removed from the results and manually processed. Similarly, non-
identified bubbles such as bubbles in clusters and irregular bubbles were manually estimated. Fig. 2 
illustrates an example of an image acquired at laboratory scale that was processed by the semi-
automated procedure. Bubbles that are highlighted by their border (or best ellipse) were automatically 
detected, whereas bubbles highlighted by crosses were manually identified. 

 
Fig. 2. Example of an image that was processed by the semi-automated procedure 

3. Results and discussion 

Bubble size estimations obtained from the automated algorithm were compared to the results obtained 
from the semi-automated procedure. The latter was considered as “ground truth”. The comparisons 
were conducted in terms of the Sauter mean diameter of the bubble size samples, as this parameter has 
proven to be correlated with the flotation rate constant (Gorain et al., 1997). Fig. 3 shows the results from 
the laboratory-scale data. The automated algorithm resulted effective in determining D32, independent 
that a percentage of bubbles were not detected, and some objects (bubbles or clusters) were 
misidentified. The coefficient of correlation between the automated and semi-automated estimates for 
the D32 values was 0.9933. As in this and most of the image processing tools the detection thresholds are 
defined from ideal data, a high correlation between the D32 estimations was expected at laboratory scale. 

The same comparison was conducted from industrial data consisting of bubble images recorded in 
mechanical flotation cells and flotation columns. No changes were made to the threshold definition 
presented in Table 1. Industrial data are typically more heterogeneous and then the automated 
algorithm was tested under non-ideal bubble images. In addition, industrial images were subject to 
additional source errors due to lighting limitations, uncertainties on the gas flowrate and hold-up, and 
the presence of solids.  

Fig. 4 shows the industrial comparison for the D32 estimation, which was classified by plant in Fig. 
4(a) (Plant A to G) and by type of flotation machine in Fig. 4(b) (mechanical cells and flotation columns). 
The industrial results presented higher variability with respect to the laboratory data, which was critical 
for D32 > 4.0 mm (D32 from the semi-automated algorithm). Although the estimated bubble sizes may 



5 Physicochem. Probl. Miner. Process., 59(5), 2023, 174474 
 

have been influenced and biased by the presence of a few large cap-shaped bubbles, results from Fig. 
4(b) indicates that the gas dispersion mechanism plays a role in the D32 reliability. For mechanical cells, 
the automated algorithm proved leading to comparable robustness in the D32 estimations with respect 
to those obtained at lab scale (Fig. 3), except for a higher variability and some abnormal conditions as 
discussed by Vinnett et al. (2022b). Gas dispersion in flotation columns is sensitive to sparger limitations, 
inappropriate air pressures, and lack of maintenance or replacement of the air injection systems. As a 
result, bubble size in flotation columns was measured in the transition from spherical-ellipsoidal 
regimes to ellipsoidal and churn-turbulent regimes.  

 
Fig. 3. Comparison between D32 estimations from the automated and semi-automated algorithms.  

Laboratory data 

(a) 

 

(b) 

 
Fig. 4. Comparison between D32 estimations from the automated and semi-automated algorithms.  

Industrial data: (a) classification by plant, (b) classification by type of flotation machine. 

Fig. 5 presents a sequence of randomly chosen images recorded in a flotation column, in which the 
D32 value presented significant bias from the automated algorithm. The drawn ellipses indicate the 
objects that were detected and processed by the automated algorithm. Although the algorithm was 
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generally effective in detecting isolated bubbles and segmenting simple clusters [e.g., Fig. 5(e), 5(f), 5(h) 
and 5(i)], the presence of large and small bubbles in the same population led to a D32 underestimation 
from the automated approach. As illustrated in Fig. 5(a), 5(g) and 5(j), large irregular and ellipsoidal 
bubbles tend to collide in the visual field forming complex clusters, hindering the segmentation by 
classical algorithms. In addition, large bubbles tend to be observed in the borders of the region of 
interest, which also complicates their identification. As a result, the Sauter mean diameters are 
underestimated because the relative presence of large bubbles artificially decreased when the images 
are automatically processed. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
(e) 

 

(f) 

 

(g) 

 

(h) 

 
(i) 

 

(j) 

 

(k) 

 

(l) 

 
Fig. 5. A sequence of automatic bubble identification from images recorded in a flotation column 

Results from Figs. 3 to 5 show that defining an automated algorithm to determine bubble size from 
ideal images leads to significant bias when using the same application at large scale. This is particularly 
critical when the flotation technologies present limitations in gas dispersion, leading to bubbles in the 
transition between ellipsoidal and turbulent regimes (D32 > 3-4 mm). The use of neural networks to 
estimate bubble size is an attractive solution to avoid the biased results presented in Fig. 4. However, 
current machine learning and artificial intelligence approaches to estimate bubble size have employed 
laboratory-scale or synthetic images as ground truth. This procedure is certainly useful when the 
proposed tool will only be applied at laboratory scale; nevertheless, the results of Fig. 3 indicate that 
estimating bubble size under ideal conditions does not seem to require advanced image processing 
techniques. On the contrary, the main potential of advanced algorithms is in the analysis of industrial 
images, from which extensive databases are required. Therefore, the development of new algorithms 
must consider the use of both laboratory and industrial data to generalize applicability. Otherwise, 
uncertainties in the D32 estimation comparable to those presented in Fig. 4 are expected, when 
characterizing bubble size at large scale. 

4. Conclusions 

Bubble size was estimated at laboratory and industrial scales in terms of the Sauter mean diameters. 
Both databases included more than 150 experimental conditions. A bubble viewer along with a 
hierarchical algorithm were employed in the bubble size measurements and estimations. The software 
performance to automatically detect bubbles from industrial images was assessed, considering that the 
algorithm parameters (thresholds) were defined from laboratory conditions. A semi-automated D32 
estimation allowed for non-biased bubble size estimations, which were used as ground truth. The main 
findings of this study are as follows: 
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• The automated algorithm was effective to estimate the Sauter diameter of bubble size populations 
at laboratory scale, with a correlation coefficient of 0.9933 between the automated and semi-
automated approaches. 

• The automated D32 estimations were subject to much higher variability at industrial scale for D32 
> 4.0 mm. This uncertainty was caused by the presence of large and small bubbles in the same 
population. The former has higher probabilities of being observed in complex clusters or 
incompletely photographed in the region of interest. As a result, these bubbles are mostly 
removed from the automated analysis, biasing the D32 estimations. 

• Biases in the bubble size estimation at large scale proved to be correlated with the gas dispersion 
mechanism. Most of the biased results were related to bubble size measurements in flotation 
columns, which have been designed to generate suitable gas dispersion conditions. However, 
limitations in the injection systems and their maintenance have commonly led to the presence of 
large and small bubbles in the same population, with the former distorting the D32 estimations. 

Most of the current studies on bubble sizing have been focused on the use of more robust and 
sophisticated algorithms to determine bubble size in flotation. The typical conclusion of those studies is 
the goodness of the proposed solution, which has been tested from either laboratory or synthetic data. 
The results presented here proved that an industrial database must be raised to generalize the 
performance of new algorithms, considering the potential of machine learning and artificial intelligence 
techniques to determine bubble size. 
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