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Abstract: This research work introduces a novel hybrid geometallurgical approach to develop a deep 

and comprehensive relationship between geological and mining characteristics with metallurgical 

parameters in a mineral processing plant. This technique involves statistically screening mineralogical 

and operational parameters using the Historical Data (HD) method. Further, it creates an intelligent 

bridge between effective parameters and metallurgical responses by the Deep Learning (DL) 

simulation method. In the HD method, the time and cost of common approaches in geometallurgical 

studies were minimized through the use of available archived data. Then, the generated DL-based 

predictive model was enabled to accurately forecast the process behavior in the mineral processing 

units. The efficiency of the proposed method for a copper ore sample was practically evaluated. For 

this purpose, six representative samples from different active mining zone were collected and used for 

flotation tests organized using a randomizing code. The experimental results were then statistically 

analyzed using HD method to assess the significance of mineralogical and operational parameters, 

including the proportions of effective minerals, particle size, collector and frother concentration, solid 

content and pH. Based on the HD analysis, the metallurgical responses including the copper grade 

and recovery, copper kinetics constant and iron grade in concentrate were modeled with an accuracy 

of about 90%. Next, the geometallurgical model of the process was developed using the long short-

term memory neural network (LSTM) algorithm. The results showed that the studied metallurgical 

responses could be predicted with more than 95% accuracy. The results of this study showed that the 

hybrid geometallurgy approach can be used as a promising tool to achieve a reliable relationship 

between the mining and mineral processing sectors, and sustainable and predictable production. 
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1. Introduction 

Today, due to the growing demand from many industries for various types of metallic and non-

metallic minerals, researchers active in the field of geology and mining engineering, are always trying 

to improve methods of collaboration between the two sectors of mining and mineral processing (Lang 

et al., 2018). This relationship is important because changes in feed quality input to the mineral 

processing plant have always been a major challenge to achieving sustainable production. For this 

reason, accurate quantitative and qualitative knowledge of feed characteristics that are directly 

monitored and controlled by the geology and mining sectors is essential to achieve the short and long 

term goals over the lifespan of the mine (Parian et al., 2018a,b). On the other hand, by reducing the 

grade of mines and the complex textural characteristics of the extraction zones and as a result, the 

increasing variability of the feed of mineral processing units, achieving products with uniform quality 
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and quantitative characteristics may face with financial  and technical problems (Yingling, 1990; 

Tungpalan et al., 2015). For this reason, traditional methods based on experience, qualitative 

observations and visual assessments will not be able to guarantee a sustainable process and must be 

supported by more accurate methods of characterizing mineral reserves (Pérez-Barnuevo et al., 2018). 

An engineered approach to improve the productivity of traditional methods of characterizing 

mineral resources is defined in the form of geometallurgy. Geometallurgy is an interdisciplinary 

approach that provides the link between geological, especially mineralogical, and metallurgical 

information so that production engineers can plan and manage production much desirably (Parian et 

al., 2015). Geometallurgical studies are basically based on mineralogical information because the 

mining program is developed based on geological and mineralogical information so that the mine unit 

is able to deliver food with minimal mineralogical and grade changes to the mineral processing unit 

(Hoal, 2008). On the other hand, this information is the basis for evaluating and valuing ore deposits 

and designing beneficiation circuits by process development companies (Parian et al., 2015). Also, in 

recent years, with the development of instrumental characterization methods of minerals, the 

tendency to develop geometallurgical research has increased and several studies have been conducted 

in the field, such as base metals (Triffett et al., 2008; Alruiz et al., 2009; Lund et al., 2013; Amer et al., 

2014; Navarra et al., 2017; Dehaine et al., 2021, 2022), platinum group metals (Becker et al., 2009), rare 

metals (Dehaine et al., 2019) and diamonds (Hoal et al., 2009), sand heavy minerals (Philander and 

Rozendaal 2013, 2014). 

In general, geometallurgical studies include the development of maps of mineralogical changes in 

the ore deposit in order to predict the metallurgical efficiency of the mineral processing plant in a 

satisfactory way. Such connections are known as geometallurgical models and are a powerful tool in 

process improvement, production planning and technical decision making (Parian et al., 2015). 

Mineralogy-based geometallurgical modeling using information on the types of minerals present, 

their texture and chemical composition, as well as their mass proportions in the ore body, will be able 

to predict the metallurgical responses, usually concentrate grade, recovery and yield, for geological 

volumes or blocks, either individually or in blend, which have already prepared for mineral 

processing plant feed in different time periods and scales (Parian et al., 2018a; Pérez-Barnuevo et al., 

2018). Despite the significant successes, the development of geometallurgical models faces several 

challenges. For example, geometallurgy requires extensive and expensive characterization studies to 

make the relationship between mineralogical block models and predict mineral processing behavior 

(Pérez-Barnuevo et al., 2018). On the other hand, each mining project will require a different 

geometallurgical model according to its specific geological characteristics, and therefore, it is not 

possible to develop a single, unique geometallurgical model for all mining projects, or at least the 

majority of them. The simplest approach in geometallurgical studies is to establish a relationship 

between the mineralogical characteristics of an ore body and the recovery of different minerals. 

However, in the mineral processing operation of a particular ore, several other parameters are also 

effective, such as the oversize and fines contents, mineral grade and heavy mineral composition, and 

physical/chemical properties of particle including size, shape, density, surface exposure, mineral 

liberation and particle chemistry (Philander and Rozendaal, 2014). 

A review of geometallurgical studies shows that one of the most important aspects of the cross-

linking process between mining and mineral processing is the interaction between operating factors 

such as solid percentage, the type and concentration of flotation reagents, and mineralogical 

parameters, that has generally been ignored. In addition, recovery is not the only metallurgical 

response in the evaluation of mineral processing processes, and other parameters such as the grade 

and tonnage of the concentrate and even the final moisture are also important. Parian et al. (2018a) 

divided geometallurgical studies into three levels based on the modeling objectives, i.e. the least 

detailed, moderate and the detailed levels, which according to the volume of information processed, 

predict the metallurgical behavior of the entire plant (whole processing circuit), sections of a single 

operation and single unit operations, respectively. However, the selection of any of the above levels 

also comes with limitations that make their usability a challenge. One of the most important of these 

restrictions rises when the geometallurgical model becomes unable to predict process behavior 

outside the range of data used to develop the initial model. 
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Despite the relatively simple mechanical and physical aspects, mineral processing processes have a 

very complicated mechanism. Such complexities mainly come from the multiplicity metallurgical and 

operational factors involved in the system as well as the interactions among them. Therefore, 

modelling and simulation of mineral processing processes have been always a challenging issue of 

debate. A recent approach to simulate complicated separation techniques is to use expert system 

methods (ESM) such as artificial neural networks, genetic algorithm etc (Asadi et al., 2020; 

Shamshirband et al., 2020; Apaydin et al., 2020). These intelligent algorithms transmit the knowledge 

or the rule behind data into a network structure by processing experimental data. ESM can be utilized 

to implement difficult functions in numerous areas, such as pattern recognition, visual system, 

classification, control, etc. Nowadays, problems that are difficult for human or ordinary computers 

can be solved by properly training intelligent algorithms (Hoseinianet al., 2020; Khoshdast et al., 2021; 

Gholami et al., 2021). One of the main applications of ESMs is forecasting based on a set of input data 

that has also yielded excellent results. Thanks to their good performance, ESMs have been frequently 

used in various scientific fields, including mining and mineral processing. 

For example, Jorjani et al. (2008) simulated the rare earth elements leaching process of apatite 

concentrate using artificial neural networks (ANN) and showed that the process could be modeled 

using the improved ANN algorithm on an industrial scale with a reasonable accuracy. Later, 

Milivojevic et al. (2012) simulated the nickel ore leaching process to show that expert systems are more 

accurate than statistical modeling using linear regression. In another research work, Hoseinian et al. 

(2017) simulated copper recovery during a column leaching process of a copper ore sample on a pilot 

scale using a hybrid neural genetic algorithm and revealed that reliable prediction results could be 

obtained using an appropriate algorithm. Recently, Sobouti et al. (2019) modeled lead recovery during 

the lead concentrate leaching process using a combination of artificial neural network and particle 

swarm optimization (PSO) methods. The noteworthy point in this study was the large number of 

operational parameters including leaching time, liquid/solid ratio, stirring speed, temperature and 

fluoroboric acid concentration, that were used in the simulation process. They showed that using an 

optimized ANN-PSO algorithm, the process can be simulated effectively. The successful application of 

artificial neural networks in simulation of mineral processing operations has also been reported by 

Vyas et al. (2020). They showed that using ANN method, the spent catalyst bioleaching process can be 

simulated with acceptable accuracy and process responses can effectively be predicted. Ghobadi et al. 

(2011) applied genetic algorithm method to simultaneously model and optimize of a copper flotation 

circuit. They showed that using an oriented genetic algorithm can decrease the calculation time by 

1/60 for a two-stage flotation system compared to conventional mathematical methods and provide 

higher optimization accuracy. In another study, Gholami and Khoshdast (2020) showed that using the 

ANN method, multiple metallurgical responses of the bioflotation process of a coal sample can 

accurately be simulated with a limited number of operating data. They evaluated different algorithms 

for the development of the ANN model and showed that the accuracy of the simulation results 

depends to a large extent on the correct choice of the network algorithm.  

The most important point emerging from the above studies is that using intelligent modeling 

methods, mineral processing operations can be effectively simulated by considering the desired 

operational and process parameters and the limited number of data. Referring to the results reported 

in the above studies reveals that the accuracy of the simulation in most cases has been more than 95%, 

which is very desirable in terms of application. Therefore, given that geometallurgical studies often 

require large volumes of data, the use of intelligent approaches can help reduce execution time, and 

sampling and characterization costs. Thus, the aim of this research is to introduce the concept of 

“hybrid geometallurgy” by coupling the statistical method of Historical Data (HD) and intelligent 

technique of Deep Learning (DL) as a novel and efficient geometallurgical approach to reduce the 

number of test works, to involve more applied parameters in the geometallurgical model 

development process and to consider the interactions between mineralogical and metallurgical 

parameters. The effectiveness of this new approach for a copper mine was successfully evaluated. To 

the best of the authors' knowledge, this is the first reported case in the field of geometallurgy. 
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2. Materials and methods 

2.1. Sampling and sample characterization 

Since the main objective of this study is to investigate the variation in the metallurgical behaviour of 

the processing plant in response to the mineralogical changes of input feed, six zones of the active 

mining areas were selected and sampled based on the opinion of the company supervisors. The 

geographical coordinates and characteristics of the sampled zones are presented in Table 1. 

Initially, 200 kg of the ore was sampled from each mining face using automatic sampling machines. 

The sample was  immediately transferred to the laboratory for crushing and preparation operations to 

prepare representative samples for the mineralogical assessments. All assaying, mineralogical 

analyses and determination of liberation degrees were performed in Miduk Copper Complex 

laboratories based on standard methods of otical, X-ray diffraction (XRD) and X-ray fluroscence (XRF) 

microscopic analyses. 

Table 1. The geological and geographical properties of the sampling points 

Sample 

no. 

Bench 

no. 

Blast 

no. 
Geological type 

GPS  coordinations Representative 

minerals 

Representative 

gangues X Y Z 

1 2570 649 
Supergene/Phyllic/Argillic 

alteration 
2570 6635.63 4184.79 Chalcocite Pyrite, Sericite 

2 2450 169 
Supergene/Phyllic 

alteration 
2450 7395.35 4027.05 Chalcocite Pyrite 

3 2420 62 Hypogene/Potassic 2420 7161.67 3924.24 Chalcopyrite Pyrite 

4 2480 236 
Supergene/Phyllic/Argillic 

alteration 
2480 7452.72 3728.45 Chalcocite Pyrite, Sericite 

5 2420 64 Hypogene/Potassic/Phyllic 2420 7287.88 3957.2 
Chalcopyrite, 

Bornite 
Pyrite 

6 2420 48 Hypogene/Potassic/Phyllic 2420 7043.88 3845.6 Chalcopyrite Pyrite 

2.2. Experimental variables and historical data (HD) design 

To select the effective parameters and their levels, the operating conditions of the concentration plant 

were monitored and analyzed throughout the last five years (from 2016 to 2021). As a result, based on 

changes in the qualitative and quantitative conditions of the final concentrate as well as the 

expectations of plant’s authorities, five operating factors including flotation feed size, collector and 

frother concentrations, solid content and pH of the input pulp to the flotation circuit were selected. 

The upper, middle and lower levels of these variables are presented in Table 2. It should be noted that 

these levels have been selected based on the monitoring results. To investigate the effect of ore 

mineralogy on the efficiency of flotation process, the amount of all copper-bearing minerals, 

sphalerite, pyrite and other iron-associated minerals is presented in Table 2. 

Since one of the main purposes of this study was to simulate the geometallurgical correlations with 

process variables using expert systems, the number and conditions of experiments were determined in 

a way that there is no regular relationship among them. For this purpose, a specified code in Matlab 

software (MathWorks R2021b v9.11, Natick, MA, USA) was developed to adjust the test conditions to: 

a) each variable must appear at least once in the experimental design, b) each level of each variable 

must appear at least once in the experimental design, c) the experiments are randomly sorted in the 

final experimental design, d) each experiment should not be replicated more than twice, and e) 

replications should not include more than half of the total of the main experiments. The last two steps 

were defined in order to determine the error of statistical analysis and to prevent overlap (bias) of the 

main effects of the variables with each other (Khoshdast et al., 2021). Finally, 66 individual 

experiments were  designed, and performed according to the experimental design created by the 

developed code. 

Since the experiments suggested by the developed MATLAB code were statistically unordered, 

statistical  analysis  and  evaluation  of the significance of various operational and mineralogical varia- 
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Table 2. Types and levels for various operating and mineralogical variables 

Operating variables  

pH 
Solid content 

(X, w/w%) 

Frother conc. 

(F, g/t) 

Collector conc. 

(C, g/t) 

Particle size 

(d80, μm) 
Level 

11 25 10 32 63 Low 

11.5 30 13 37 90 Mid 

12 35 16 40 110 High 

Mineralogical variables  

Sphalerite (Sp, %) Chalcopyrite (Cp, %) Covellite (Cv, %) Chalcocite (Cc, %) Level 

0.11 0.06 0.00 0.02 Low 

0.27 2.45 0.08 0.33 High 

Limonite (Lm, %) Magnetite (Mg, %) Hematite (Hm, %) Pyrite (Py, %) Level 

0.00 0.00 0.00 5.33 Low 

0.56 0.29 0.21 17.2 High 

bles was conducted using historical data (HD) method. The HD method is a new approach in the 

design and analysis of experiments. Unlike conventional designs such as full factorial and response 

surface, which lack a pre-designed structure based on statistical principles, HD design allows the 

engineers to evaluate the significance of the desired parameters with any number of levels. This very 

useful feature is extremely beneficial for statistical analyses of industrial data recorded over time or in 

industrial studies where it is impossible to use conventional experimental designs due to 

uncontrollable fluctuations. It should be noted that in the HD method, if the number of process 

variables is large, it is not possible to examine the interactions between the variables due to the bias 

(Montgomery, 2001). However, in this method, like other conventional designs with a regular and 

predefined structure, data analysis was performed by developing statistical models, analysis of 

variance (ANOVA) and using the main effect plots. Therefore, due to the nature of geometallurgical 

studies based on the analysis of large volumes of mineralogical and metallurgical data recorded over a 

long time, the use of HD method is a practical and reliable approach that is proven for data studied in 

this research work. 

2.3. Flotation experiments and calculations 

All the flotation experiments were carried out in a standard Denver D-12 flotation machine equipped 

with a 2 L cell. The pulp level was maintained constant by continuously adding water as required. For 

each experiment, an appropriate amount of the ore sample was mixed with 1 L of tap water to reach a 

desirable solid content. It was then agitated at an impeller speed of 1000 rpm for 5 min in the flotation 

cell to ensure that all ore particles were well suspended. Following conditioning, the cell was filled 

with water to a set level. Then, combination of collectors with the mixture of Z-11 (sodium isobutyl 

xanthates), X231 (O-isopropyl-N-ethyl thionocarbamate) and A3477 (sodium diisobutyl 

dithiophosphate) was added and conditioned for 3 min. After conditioning, the requisite amount of 

frother as a mixture of A65 (a polyglycol ether with molecular weight of 395.61) and MIBC (methyl 

isobutyl carbinol) was added and conditioned for another 2 min. Flotation was continued for 12 min 

until the froth zone was weighed. All experiments were conducted in kinetic mode by collecting 

concentrated froths during predetermined sampling intervals. At the end of each experiment, the 

collected concentrates and tailings were weighed and dried in an oven at 60°C over night (Khoshdast 

et al., 2012). 

The efficiency of the flotation process was evaluated in terms of final recovery and grade of Cu and 

Fe using the following Equation (Khoshdast et al., 2011): 

𝑅 =
𝐶

𝐹
×

𝑐

𝑓
× 100                                                                       (1) 

where R (%) is recovery, F and C are the total mass of feed and concentrate, respectively, f (%) and c 

(%) are element grade (%) of feed and concentrate, respectively. To investigate the effect of variables 
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on the flotation rate of copper, the kinetic constant of the flotation process was calculated using the 

classical first-order kinetics equation (Gholami and Khoshdast, 2020): 

𝑅 = 𝑅∞(1 − 𝑒−𝑘𝑡)                                                                    (2) 

where R∞ (%) is the maximum achievable recovery, k (1/min) is the flotation rate constant  and t (min) 

is the flotation time. 

2.4. Deep learning simulation 

2.4.1. Preliminary data studies and normalization 

In this study, 10 inputs were included as particle size (µm), collector concentration (g/t), frother 

concentration (g/t), solid content (w/w%), pH (as the operating conditions), chalcocite (%), covellite 

(%), chalcopyrite (%), pyrite (%) and sphalerite (%) (as the mineralogical data). The outputs were Cu 

grade (%), Cu recovery (%), Fe grade (%) and Cu kinetics rate (1/min) that four models were 

developed to predict them based on the inputs. The statistical summary of the data is presented in 

Table A1. 

Data distribution was also examined to understand normal or non-normal distribution of the data. 

Kolmogorov-Smirnov  test of normality was chosen because it does not need the underlying 

population distribution of the data to run it and has no restrictions on sample size. K-S  test was 

applied to the data using IBM SPSS Statistics version 26 software. A 95 percent confidence interval 

was used for the K-S test and the software null hypothesis was that the data are not normally 

distributed. After the K-S  test, as shown in Table A2, p-values of all variables except the Cu kinetics 

rate are less than 0.05. Therefore, the null hypothesis is confirmed and the data is not normally 

distributed. Besides, normalization was applied by re-scaling all data to a standard frame to boost the 

network training phase. The inputs and the outputs are normalized using Equation (3) to rescale them 

in the range of [-1,1]: 

𝑋𝑛 = (
𝑋𝑖−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
) × 2 − 1                                                                (3) 

where Xn and Xi are normalized and actual values, respectively. Xmin and Xmax are the minimum and 

maximum values of each subset (inputs–outputs). 

2.4.2. Long short-term memory neural network (LSTM) 

Recurrent Neural Networks (RNNs) are the most widely used deep learning techniques for predicting 

time series data. Unlike the traditional neural networks, RNNs are able to store past information in the 

network and use it to process a sequence of inputs. But the main issue of RNNs is vanishing gradient 

and exploding gradient problems as described by Bengio et al. (1994). Gradient descent optimization 

algorithm is used to train RNNs. In this optimization algorithm, each parameter changes according to 

its effect on the final result of the network. This is implemented by a partial derivative of the error 

function for each parameter in each iteration of the training process. The vanishing problem refers to 

the fact that the values of the gradients gradually become so small that the training process is severely 

slowed down or stopped. Long short-term memory neural network (LSTM) is developed to cope the 

challenge of vanishing gradient problem (Calin, 2020). LSTM is a special kind of RNN which was first 

introduced by Hochreiter and Schmidhuber (1997). They are capable of learning long-term 

dependencies and remembering information for long time periods (Le et al., 2019). This deep neural 

network can be used for both classification and estimation purposes.  

In this study, to estimate the outputs, LSTM was used to develop four models based on input data. 

There are new concepts in LSTM neural networks that did not exist in traditional RNNs. In this 

network, there are three gates through which the network controls the data flow inside including 

forget gate, input gate, and output gate. In addition to these three gates, the main component of this 

type of network is the cell state, so-called long-term memory. The cell state connects all LSTM blocks 

and allows information to be added to or removed from the network (Graves, 2012). Also, all 

recurrent neural networks are in the form of repetitive sequences of neural network blocks. These 
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repetitive blocks are shown in Fig. 1(a). For more information on the LSTM neural networks, more 

detailed information can be found elsewhere (Bernico, 2018). 

 

Fig. 1. The structure (a) and proposed architecture (b) of long short-term memory neural network 

2.4.3. LSTM neural network design 

MATLAB software was used to develop codes, LSTM networks and to perform the modeling process. 

The number of neurons in the input and output layers depends on the number of inputs and outputs 

of the problem. In this study, number of input and output layers of neurons is ten and one, 

respectively. The number of hidden layers is directly related to the complexity of the problem, and in 

most problems with different complexities, two or at most three hidden layers were sufficient. Also, 

implementing more than three hidden layers was non-optimal in terms of time complexity (Uzair and 

Jamil, 2020). Our models are comprised of two LSTM layers with 30 and 20 neurons, followed by a 

fully connected layer for generating outputs. The fully connected layer causes the network result to be 

presented in the form of a vector with a specified size. Fig. 1(b) depicts the architecture of the 

proposed LSTM netwok.  

To train models, batch size was set as 10, meaning that parameters were updated every 10 training 

samples. Max Epochs which defines the number of times that the learning algorithm work through the 

entire training dataset was adjusted  at 40. Adam algorithm was used to optimize the weights in each 

level. In addition to speed, this algorithm is highly efficient on systems with low memory. Other 

parameters including Gradient Threshold, Initial Learn Rate, Learn Rate Drop Period and Learn Rate 

Drop Factor were also adjusted as shown in Table A3. The data was also divided into training (70 %), 

testing (20 %) and validation (10 %) matrices in a way that validation data increased the quality of the 

training process and prevented over-fitting. 

3. Results and discussions 

3.1. Elemental and mineralogical studies 

The results of mineralogical analyses of the studied samples are presented in Table 3. The chalcopyrite 

content of sample 5 is 2.45%, while samples 3 and 6 have the highest amount of chalcopyrite. Samples 

(a)  

(b)  
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4, 1 and 2 contain small amounts of chalcopyrite. In samples 2 and 4, the amount of covellite is 3 times 

more than samples 5 and 6, and sample 3 has the lowest amount of covellite among the samples. 

Samples 1 and 3 have higher chalcocite than other samples, but these two minerals are not liberated 

well in these respective ores; this is while samples 5 and 6 with the amounts of 0.045 and 0.021% have 

the lowest amount of chalcocite, the same small amount of which are completely liberated. Sample 2 

has the highest amount of sphalerite and samples 5 and 4 contain small amounts of this mineral. 

Samples 1, 3 and 6 also have the same amount of sphalerite. Samples 2 and 1 contain the highest 

amount of pyrite, respectively, while the proportion of pyrite in the other samples is almost the same. 

Sample 5 has the highest amount of hematite compared to other samples. Sample 2 also lacks the 

hematite mineral. Samples 4 and 6 have the highest amount of magnetite and samples 1 and 2 do not 

have this mineral. Samples 1 and 2 have no limonite mineral, while sample 5 with 0.558% has the 

highest amount of limonite. 

The results of chemical analysis of the samples are presented in Table 4. According to the resutls, 

sample 5 with a grade of 0.95% has the highest grade of copper, , and samples 2 and 4 with a value of 

0.21 and 0.18, respectively, have the lowest amount of copper. 

Table 3. Percentage of key minerals considered in metallurgical studies for different samples 

Sample no. Chalcocite Covellite Chalcopyrite Sphalerite Pyrite Hematite Magnetite Limonite 

1 0.330 0.030 0.107 0.164 12.442 0.119 0.000 0.000 

2 0.087 0.076 0.115 0.274 17.196 0.000 0.000 0.000 

3 0.106 0.004 1.248 0.165 5.334 0.131 0.148 0.065 

4 0.099 0.077 0.058 0.109 5.464 0.145 0.251 0.025 

5 0.045 0.021 2.454 0.122 5.721 0.210 0.114 0.558 

6 0.021 0.018 1.275 0.171 6.603 0.199 0.295 0.148 

Table 4. Percentage of key elements considered in metallurgical studies for different samples 

Sample no. 1 2 3 4 5 6 

Cu 0.390 0.210 0.540 0.180 0.950 0.490 

Fe 5.920 8.060 3.580 3.340 4.000 3.920 

3.2. Development of historical data model  

The first step in analyzing the impact of operational variables on process responses in order to 

develop a parametric model that can accurately predict the desired response in the operating space, 

i.e. within the low to high levels intended for variables (Boveiri et al., 2019). In this study, Design 

Expert v.7.0 software was used to model experimental data. An essential feature of the HD approach 

is that, unlike other standard designs, it is possible to fit more models to experimental data. In the 

second step, after the development of the initial model by the software, abnormal data were identified 

by examining the model parameters and the model was optimized by the user to achieve the best 

fitting results. The result of these measures for the data obtained in flotation experiments was the 

development of Response Surface Reduced Linear model for all process responses as below: 

(4) 
𝐶𝑢 𝐺𝑟𝑎𝑑𝑒 (%) = −22.27 − 0.04 × 𝑑80 − 0.25 × 𝐶 − 0.16 × 𝐹 − 0.23 × 𝑋 + 1.32 × 𝑝𝐻 + 83.78 × 𝐶𝑐

+ 182.90 × 𝐶𝑜 + 11.50 × 𝐶𝑝 − 3.41 × 𝑃𝑦 + 244.37 × 𝑆𝑝 

(5) 
𝐶𝑢 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (%)

= 0.07 × 𝑑80 + 1.10 × 𝐶 + 3.31 × 𝐹 + 1.49 × 𝑋 − 2.31 × 𝑝𝐻 − 193.99 × 𝐶𝑐

− 261.17 × 𝐶𝑜 + 2.55 × 𝐶𝑝 + 4.28 × 𝑃𝑦 − 264.43 × 𝑆𝑝 

(6) 
𝐹𝑒 𝐺𝑟𝑎𝑑𝑒 (%) = 0.08 × 𝑑80 + 0.27 × 𝐶 − 0.05 × 𝐹 − 0.18 × 𝑋 − 4.39 × 𝑝𝐻 + 85.78 × 𝐶𝑐

+ 359.77 × 𝐶𝑜 + 11.47 × 𝐶𝑝 − 2.46 × 𝑃𝑦 + 275.02 × 𝑆𝑝 
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(7) 
𝑅𝑎𝑡𝑒 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (1/𝑚𝑖𝑛)

= 0.01 × 𝑑80 + 0.02 × 𝐶 − 0.09 × 𝐹 − 0.02 × 𝑋 + 0.25 × 𝑝𝐻 − 6.55 × 𝐶𝑐

− 20.49 × 𝐶𝑜 − 0.14 × 𝐶𝑝 + 0.11 × 𝑃𝑦 − 4.31 × 𝑆𝑝 

where d80, C, F, X and pH are operational paramters respectively including particle size (µm), Collector 

concentration (g/t), Frother concentration (g/t), Solid content (%w/w) and pulp pH, and Cc, Co, Cp, 

Py and Sp correspond to mineralogical contents (%) of chalcocite, covellite, chalcopyrite, pyrite and 

sphalerite, respectively. 

The validation parameters for the developed models are listed in Table 5. As shown in Table 5, the 

suggested prediction models are all significant due to their high value of Fisher's F-test (almost > 30) 

and marginal probability value (p model < 0.0001). The residuals normal probability plot is an efficient 

tool for evaluating the significance of the prediction model (Yetilmezsoy et al, 2009). The relatively 

uniform normal probability plots for all responses are shown in Fig. 2 confirming the normality 

assumptions and independence of the residuals during the statistical analyses. In addition, the high 

values of the adjusted correlation coefficients (Adj R2 > 85%) also indicate significance of the 

prediction models. The Pred R2 values were also reasonably high, implying that the model can explain 

variability in predicting new observations with acceptable accuracy, which is in reasonable agreement 

with the Adj R2 values (Shak and Wu, 2015). Adeq precision is a also another statistical measure 

showing the signal to noise ratio; the desirable value is greater than 4 (Montgomery, 2001). In this 

investigation, the ratios were 21.07, 11.03, 8.98 and 10.71 for copper grade and recovery, iron grade 

and kinetic rate, respectively. These values imply an adequate signal so that the models can be used to 

navigate and predict the design space.   

Table 5. Validation measures of models developed for process responses 

Measure Cu grade (%) Cu recovery (%) Fe grade (%) Rate constant (1/min) 

F value 62.9624 79.7547 39.8100 40.0570 

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Std. Dev. 2.0641 19.9131 7.6594 0.5851 

R-squared 0.9251 0.9421 0.8825 0.8831 

Adj R-squared 0.9104 0.9303 0.8603 0.8611 

Pred R-squared 0.8875 0.9180 0.8376 0.8373 

Adeq precision 21.0733 11.0301 8.9823 10.7135 

3.3. Statistical analysis of main effects 

Model equations 4-7 were used to assess the significance of operating variables on process responses. 

Tables A4 to A7 show the ANOVA results within a confidence interval of 95%. As shown in Tables 

A4-7, the effects of all operational variables on process responses are statistically meaningful due to p-

values less than 0.05. It is also noteworthy that the effects of mineralogical factors are more significant 

than metallurgical factors (p-value < 0.0001). As can be seen in the analysis of variance tables, no 

interaction was considered in the analyses. In HD studies, due to the lack of repetition, different 

interactions will overlap, and therefore, their analysis is not possible independently. On the other 

hand, due to the resultant bias, the development of the models has been done using only the main 

effects. However, studies have shown that considering the interactions, the accuracy of the model 

either did not change much or even decreased in some cases. The main effects plots of different 

operating variables are shown in Figs. 3 to 12 for different responses. These plots are an effective tool 

for evaluating the influence of each variable on the target response. 

3.4. Interpretation of the effects of operating variables 

The role of operating parameters in the grade and recovery of copper and iron as well as copper 

flotation rate is shown in Figs. 3 to 7. As can be seen, with increasing particle size and thus decreasing 

the degree of freedom, the grade and recovery decreases. This effect can be clearly seen in the increase 
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in iron content in the concentrate by increasing the particle size. However, maximum recovery is 

achieved with a characteristic size of 90 µm which is optimal for this type of ores as shown in previous 

studies (Hassanzadeh and Karakas, 2017a, b). As the particle size decreases below 63 µm, although it 

improves through an increase in the degree of freedom, the recovery decreases because of production 

of a high amount of slimes and the increase of the entrainment rate. Significant reduction of copper 

recovery for fine fraction sizes have been addreaaed broadly in the literature and related fundamental 

and practical reasons can be found elsewhere (Hassanzadeh et al., 2018; Farrokhpay et al., 2021). 

Regardless of the nonlinear effect of the collector concentration, its impact on the grade and recovery 

is opposite to each other. Obviously, as the collector concentration increases and the particle 

hydrophobicity improves, the rate at which the gangue particles direct to the concentrate also 

increases and, as a result, the grade decreases. Although the effect of collector concentration on iron 

grade is not significant, but at medium concentration, iron grade in concentrate is maximized. This 

effect can be attributed to the fact that since the collector used in this study is actually a combination 

of three different collectors, at a certain concentration, the competitive action of these collectors has 

likely improved the hydrophobicity of iron minerals. In this regard, Agheli et al. (2018) investigated 

the effect of pyrite content of feed and configuration of locked particles on rougher flotation of copper 

in low and high pyritic ore types. They concluded that pyrite can be transferred to the concentrate 

through different physical and chemical mechanisms, which can be intensified for high-pyritic copper 

ores.  

 

Fig. 2. Normal plot of the residuals for (a) Cu grade, (b) Cu recovery, (c) Fe grade, and (d) flotation rate constant 

(a)   (b)  

(c)   (d)  
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The effect of increasing the frother concentration on the copper grade is small but descending; 

however at the high level of this variable, the recovery has increased significantly. In general, recovery 

improves with rising frother concentration due to improved froth stability and reduced coalescence 

rate and consequent drop-back of particles to the pulp. The effect of froth stability in mechanical cells 

on the concentration of concentrate is very limited due to the low height of the froth phase and the 

descending trend observed in Fig. 5 can be attributed to the increased recovery of gangue particles to 

the concentrate. The decrease in iron content by changing the concentration of the frother can also be 

attributed to the phenomenon that with increasing the dosage of the frother, the size of the bubbles 

decreases and their ability to float iron-containing particles with higher density decreases. 

 

Fig. 3. Main effect plots showing the effect of particle size on metallurgical response 

 

Fig. 4. Main effect plots showing the effect of collector concentration on metallurgical response 

 

Fig. 5. Main effect plots showing the effect of frother concentration on metallurgical response 

The effect of solid percentage on copper recovery is ascending and on iron grade is decreasing, 

while the maximum grade of copper is obtained in the middle level of this parameter. As the 

percentage of solid enhances, the rate of mechanical entrainment exceeds regarding the increase in the 

rate of turbulence in the pulp environment, resulting in improved copper recovery but a decrease in 

grade. As commonly known, there is an optimal range of solid content for each specific process to 

maximize the target mineral`s ultimate recovery and kinetics rate. Azizi et al. (2015) reported that 

enhancing %S from 15% to 25% improved copper recovery but significantly attenuated by a further 

increase to 35%, which is in line with our observation. The pH of the pulp has a similar effect either 

copper grade or recovery, and the maximum of both metallurgical responses is obtained at the 

intermediate level, i.e., 11.5. Obviously, copper ore flotation is significantly dependent on pulp 
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chemistry and the best performance of flotation reagents for interaction with mineral surface occurs 

under optimal chemical conditions. The decrease in iron content in the concentrate with increasing pH 

can be attributed to the increase in pyrite depression rate by increasing the amount of lime, as a pH 

regulator and depressant of this mineral.  

As can be seen in the results (Figs. 3-7), except for pH, the effect of other variables is nonlinear. As 

the particle size increases, the flotation rate decreases due to the reduced carrying capacity of bubbles, 

but as can be seen, the flotation rate increases again with increasing particle size. However, in these 

particle sizes, the grade and recovery of copper have decreased. This unusual behavior may be due to 

the interaction between some variables. Given that it is not possible to accurately assess the interaction 

between variables in HD studies, it is difficult to provide a definitive reason for this behavior. 

Hassanzadeh et al. (2019) addressed the impact of such interactive effects and reported contradictory 

results in the literature. As the collector concentration increases, the flotation rate increases due to 

improved particle hydrophobicity. In general, it is expected that the flotation rate increases with 

increasing frother concentration due to the improvement of bubble dynamic properties in the pulp 

phase, but according to Fig. 5, the flotation rate decreases with excessive frother concentration to the 

middle level first and then increases again. This behavior may be due to the interaction between 

frothers and collectors.  

As with the frother concentration, the flotation rate is minimized at the intermediate level of the 

solid percentage and then increased. At low solid percentages, due to the steady conditions in the 

pulp environment, the particles are less likely to be released from air bubbles and therefore the 

flotation rate is improved. As the percentage of solid increases and as a result, the turbulence in the 

pulp increases, the bubbles release their loads and the flotation rate decreases. As the solid percentage 

increases and the hindered settling conditions prevail, the untrue flotation rate of the particles and, 

consequently, the total flotation rate increases again. The effect of pH on the flotation rate is linearly 

steep. Increasing the pH due to the increase in pyrite depression rate causes more copper mineral 

particles to float and consequently the copper flotation rate also increases. 

 

Fig. 6. Main effect plots showing the effect of solid content on metallurgical response 

 

Fig. 7. Main effect plots showing the effect of pulp pH on metallurgical response 

3.5. Interpretation of the effects of mineralogical variables 

The effect of mineralogical characteristics on copper flotation performance is shown in Figs. 8-12. As 

can be seen, ore mineralogy has a very complex effect on the behavior of metallurgical responses, and 

this clearly confirms the need for geometallurgical studies. The fluctuations observed in all diagrams 
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are contributed to differences in the liberation degree of minerals in the sample studied. Table 6 shows 

the degree of freedom for target minerals in the samples. To ease analyzing the mineralogical 

composition effect on the behavior of the flotation process, the average trend diagrams of each 

response are also drawn. 

According to the given results (Figs. 8-12), with increasing propotion of chalcocite (Cu2S), the 

copper grade in the concentrate follows a decreasing trend, while with increasing the amount of 

chalcopyrite (CuFeS2), the grade increases almost linearly. Although both minerals are sulfide and the 

collectors used in the process are suitable for the flotation of this type of minerals, the behavior of 

these two minerals in the flotation process is opposite to each other. According to Table 6, it can be 

seen that a higher degree of freedom does not necessarily improve the grade. For example, the 

liberation degree of chalcocite for samples with a grade of 0.099 (0.10 in the figure) and 0.106 (0.11 in 

the figure) is 100% and 50%, respectively, while the grade of concentrate for the case with lower 

liberation degree is far greater. The ratio of chalcocite to chalcopyrite (Cc/Cp) is also presented in 

Table 6. By comparing this ratio for the above two samples, it clearly shows that this ratio is vital to 

analyze the significant difference in behavior of these two samples. As can be seen in the table, the 

Cc/Cp ratio for the sample with the grade of 0.099% is equal to 1.7 and for the sample with the grade 

of 0.106% is equal to 0.09. Comparison of this ratio for other samples in the table indicates that the 

grade in concentrate improves by reducing this ratio. The reason for this can be attributed to the 

competition of chalcocite and chalcopyrite minerals in interaction with collectors. As the portion of 

chalcocite decreases, the portion of floated chalcopyrite increases. This effect is also clearly observed 

in the copper recovery behavior (Fig. 6). However, as the portion of chalcopyrite increases due to the 

higher iron content, the iron content of the concentrate also increases (Fig. 10). 

Table 6. The percentage of liberation degree of minerals with significant effect 

Sample no. Chalcocite (%) Chalcopyrite (%) Cc/Cp Covellite (%) Pyrite (%) 

1 51.35 6.25 3.06 0 80.24 

2 90.48 100 0.76 63.54 98.61 

3 50 94.25 0.09 100 98.01 

4 100 77.27 1.7 100 96.09 

5 100 98.15 0.02 80 89.39 

6 100 100 0.02 100 100 

 

Unlike high-grade copper ores, both the grade and recovery of copper decreases with increasing 

covellite (CuS) portion. According to Table 6, there is an inverse relationship between the grade and 

liberation degree of this mineral in the samples. The effect of increasing the grade of covellite on the 

grade of iron in concentrate is a decreasing trend, but at the highest grade of covellite, the grade of 

iron suddenly increases. Referring to Table 6, it can be seen that the degree of freedom of covellite in 

the sample with a high grade of this mineral is much lower than other samples (63.54%), and 

therefore, iron directly transfers to the concentrate with particles locked with covellite. According to 

Figs. 8 to 12, the copper grade has decreased sharply with increasing pyrite while the iron grade has 

increased significantly. Obviously, with increasing pyrite due to competition with flotation of copper 

minerals, copper recovery also decreases. 

 

Fig. 8. Main effect plots showing the effect of chalcocite content on metallurgical response 
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Fig. 9. Main effect plots showing the effect of covellite content on metallurgical response 

 

Fig. 10. Main effect plots showing the effect of chalcopyrite content on metallurgical response 

 

Fig. 11. Main effect plots showing the effect of pyrite content on metallurgical response 

Another mineralogical parameter with a meaningful and significant effect on process responses 

was the sphalerite grade in the samples. In general, increasing sphalerite means boosting the rate of 

collector adsorption and competitive flotation with copper minerals and decreasing copper grade. The 

slight increase in copper recovery is also due to locking with other minerals and thus increasing the 

iron content in the concentrate. As can be seen, the trend of flotation rate changes is the same as the 

way copper recovery is influenced by the mineralogical properties of the input feed, and therefore, the 

same argument can be made for the trends observed in flotation rate plots. 

 

Fig. 12. Main effect plots showing the effect of sphalerite content on metallurgical response 

3.6. Deep learning simulation results 

To evaluate the network's performance, the mean squared error (MSE), root mean square error 

(RMSE), and percentage error were used. The following equations were applied to calculate the 



15 Physicochem. Probl. Miner. Process., 58(3), 2022, 147841 

 

respective errors and the estimation results in the form of accuracy. The results are listed in Table 7 for 

Cu grade, Cu recovery, Cu kinetics rate and Fe grade (Schober et al., 2018): 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖

′)2𝑛
𝑖=1                                                                  (10) 

        𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖

′)2𝑛
𝑖=1                                                                (11) 

Table 7. Estimated results for the outputs using LSTM networks 

Algorithm Training Test 

LSTM for MSE RMSE % Error MSE RMSE % Error 

Cu grade 2.3482e-06 0.001 0.077 0.007 0.086 4.302 

Cu recovery 1.1672e-07 3.4165e-04 0.017 0.009 0.095 4.740 

Cu kinetics rate 3.1371e-07 5.6010e-04 0.028 0.008 0.089 4.438 

Fe grade 3.5781e-07 5.9818e-04 0.030 0.010 0.101 5.046 

 

Figs. 12 to 15 demonstrate that the estimated values are in good agreement with experimental 

measurements. The fitting plot of training data for all the models shows the R-squared value close to 

1. Meanwhile, experimental results also show that all models were able to estimate outputs with 

excellent accuracy of about 95%. The results confirm that the LSTM networks are well-suited to find 

relationships among features and can be used for making predictions based on time series data. One 

of the main reasons for LSTM networks' reasonable performance is the recurrent nature of this neural 

network and the presence of loops and gates within its iterative blocks, which allow past information 

to remain in the network and be used in decisions. Traditional recurrent neural networks cannot recall 

and use information from the distant past, so LSTM neural network with its new concepts was 

developed to overcome this weakness (Zhao et al., 2020). 

 

Fig. 12. Results of training and testing data for estimating Cu grade using LSTM network 

Using the developed networks, the desired output could be estimated with a great accuracy. But 

another crucial point is to understand how much each input variables affect the desired output(s). 

Since neural networks are black boxes and studying their structure have not given us any insights on 
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the structure of the function being approximated, the importance and impact of each input variable on 

the output should be specified. As described by Pu et al. (2020), we can calculate the change of the 

model estimation error when an input value is randomly shuffled. If the model relies on an input for 

estimation, the model estimation error is expected to increase by permuting that input value. Because 

four models were developed for the outputs, the mentioned process was performed for all four 

models and the results of which are shown in Fig. 16. For instance, if the importance of features is 

determined in a processing plant, when changes in system output occur, if the gap between the output 

of the process and the desired output is wide, the more important inputs can be changed. If this gap is 

narrow, adjusting input values with low impact on outputs is recommended. 

 

Fig. 13. Results of training and testing data for estimating Cu recovery using LSTM network 

 

Fig. 14. Results of training and testing data for estimating Cu kinetics rate using LSTM network 
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It is noteworthy that the results of the features importance process are in good agreement with the 

ANOVA results (Tables A4 to A7), and the effects of mineralogical factors on outputs are more 

significant. In addition to accuracy, features importance results along with HD results, can also 

confirm that the LSTM method has been successful in developing models and extract meaningful 

characteristics from the training data. Despite the successful estimation of LSTM in this study, black-

box property of LSTM or even all deep learning methods remains a challenge and requires further 

investigations. We expect to adjust desired output(s) by changing inputs based on features importance 

investigation but it cannot provide a quantitative relationship between inputs and outputs due to the 

lack of an explicit function. Thus, it is unknow how much of the alternation for each input value can 

result in the expected output values. So, as a suggestion for future research, quantifying the 

significance of input variables should be an issue for future works. 

 

Fig. 15. Results of training and testing data for estimating Fe grade using LSTM network 

    

    

Fig. 16. Importance of features for process responses in the LSTM network 
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4. Conclusions 

Despite the necessity of metallurgical studies in every mining activity to achieve sustainable 

production and products with optimal quality and quantity, the need for multiple test works, large 

volumes of sample characterization analyses, large amounts of data and, consequently, the need to 

spend considerable time and cost are significant challenges for such studies. The new approach of 

hybrid geometallurgy presented in this research is a solution by which the most important goal of 

geometallurgical studies i.e., to create a meaningful bridge between mining information and in 

particular mineralogical information, and metallurgical information in the mineral processing unit, 

can be vindicated using archived data and the efficient statistical method of historical data (HD) with 

minimal time and cost. Moreover, by simulating the refined results of HD studies using the deep 

learning (DL) method, an intelligent model can be developed to predict the operational responses of 

the mineral processing sector. The proposed structure for hybrid geometallurgical studies is 

schematically presented in Fig. 17.  

 

Fig. 17. Recommended main steps involved in hybrid geometallurgical studies 

The efficiency of this proposed method was evaluated for a ore samples obtained from a copper 

mine. HD analyses revealed that the mineralogical and operational parameters can be correlated to the 

metallurgical responses with correlation coefficients around 90%. The significance of the studied 

factors was examined through ANOVA with Fisher and probability factors. Considreing the 

significant paramters as inputs to the DL algorithm, simulation results showed that the process 

behaviour including the copper grade and recovery, copper kinetics constant and iron grade in 

concentrate in this study, could be predicted with more than 95% accuracy. In addition, one of the 

most important features of this approach is the possibility of considering a number of more effective 

parameters in the geometallurgical model. Future applications for the current geometallurgical 

approach may include the evaluation of exploration prospects, contributions to feasibility studies and 

providing assistance to optimise metallurgical processes. The Hybrid geometallurgical approach can 

also be useful to the other mineral industries as it is generically structured and can be modified to 

accommodate other ore types and different processing flow sheets. 
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APPENDIX 

Table A1. The statistical summary of the data used in simulation process 

Type of 

variable 
Variable Minimum Mean value Maximum 

Standard 

deviation 

Operating 

conditions 

Particle size (µm) 63 103.909 110 14.253 

Collector concentration (g/t) 32 36.818 40 1.762 

Frother concentration (g/t) 10 13 16 1.289 

Solid content (%w/w) 25 30 35 2.148 

pH 11 11.500 12 0.215 

Mineralogical 

data 

Chalcocite (%) 0.021 0.115 0.330 0.102 

Covellite (%) 0.004 0.038 0.077 0.029 

Chalcopyrite (%) 0.058 0.876 2.454 0.889 

Pyrite (%) 5.334 8.793 17.196 4.529 

Sphalerite (%) 0.109 0.167 0.274 0.053 

Operating 

responses 

Cu grade (%) 1.050 7.493 23.490 6.730 

Cu recovery (%) 14.100 72.677 96.220 21.453 

Fe grade (%) 0.110 1.390 3.070 0.758 

Cu kinetics rate (1/min) 7.010 19.595 35.500 7.221 

Table A2. Results of Kolmogorov-Smirnov test of normality 

 Mean Std. deviation Absolute Positive Negative Test Statistic two-tailed p-value 

Particle size 103.910 14.253 0.484 0.335 -0.484 0.484 0.000 

Collector conc. 36.820 1.762 0.450 0.368 -0.450 0.450 0.000 

Frother conc. 13.000 1.289 0.409 0.409 -0.409 0.409 0.000 

Solid content 30.000 2.148 0.409 0.409 -0.409 0.409 0.000 

pH 11.500 0.215 0.409 0.409 -0.409 0.409 0.000 

Chalcocite 0.115 0.102 0.367 0.367 -0.178 0.367 0.000 

Covellite 0.038 0.029 0.272 0.272 -0.242 0.272 0.000 

Chalcopyrite 0.876 0.885 0.305 0.305 -0.178 0.305 0.000 

Pyrite 8.793 4.529 0.352 0.352 -0.222 0.352 0.000 

Sphalerite 0.167 0.053 0.307 0.307 -0.144 0.307 0.000 

Cu grade 7.493 6.731 0.227 0.227 -0.169 0.227 0.000 

Cu recovery 72.677 21.453 0.172 0.136 -0.172 0.172 0.000 

Rate constant 1.390 0.758 0.059 0.059 -0.051 0.059 0.200 

Fe grade 19.595 7.221 0.135 0.135 -0.104 0.135 0.005 
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Table A3. Parameter values of long short-term memory neural network 

Parameters Value 

Batch size 10 

Max epochs 40 

Gradient threshold 0.500 

Initial learn rate 0.005 

Learn rate drop period 7 

Learn rate drop factor 0.200 

 

Table A4. Analysis of variance results for copper grade as process response 

Source Sum of squares df Mean square F-value 
p-value 

(Prob > F) 

Particle size (d80) 18.5138 1 18.5138 4.34528 0.0421 

Collector conc. (C) 12.3419 1 12.3419 8.96694 0.0095 

Frother conc. (F) 28.2270 1 28.2270 6.62501 0.0042 

Solid content (X) 13.7593 1 13.7593 3.22937 0.0078 

pH 42.5164 1 42.5164 9.97881 0.0032 

Chalcocite (Cc) 161.8362 1 161.8362 37.9837 < 0.0001 

Covellite (Co) 79.61797 1 79.61797 18.6867 < 0.0001 

Chalcopyrite (Cp) 375.3417 1 375.3417 88.0945 < 0.0001 

Pyrite (Py) 217.0748 1 217.0748 50.9485 < 0.0001 

Sphalerite (Sp) 205.7975 1 205.7975 48.3016 < 0.0001 

Residual 217.2943 51 4.260673   

Cor total 2899.918 61    

Table A5. Analysis of variance results for copper recovery as process response 

Source Sum of squares df Mean square F-value 
p-value 

(Prob > F) 

Particle size (d80) 1544.334 1 1544.334 3.8946 0.0541 

Collector conc. (C) 439.0707 1 439.0707 11.0728 0.0298 

Frother conc. (F) 1106.797 1 1106.797 27.9119 0.0101 

Solid content (X) 233.149 1 233.149 5.8797 0.0447 

pH 1646.409 1 1646.409 4.1520 0.0470 

Chalcocite (Cc) 87886.13 1 87886.13 221.6372 < 0.0001 

Covellite (Co) 52202.67 1 52202.67 131.6482 < 0.0001 

Chalcopyrite (Cp) 56385.51 1 56385.51 142.1968 < 0.0001 

Pyrite (Py) 37593.33 1 37593.33 94.8054 < 0.0001 

Sphalerite (Sp) 43318.23 1 43318.23 109.2428 < 0.0001 

Residual 19430.05 49 396.5316   

Cor total 335682.6 59    

Table A6. Analysis of variance results for iron grade as process response 
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Source Sum of squares df Mean square F-Value 
p-value 

(Prob > F) 

Particle size (d80) 740.4 1 740.4 12.62 0.0008 

Collector conc. (C) 23.67 1 23.67 4.00 0.0053 

Frother conc. (F) 6.02 1 6.02 1.00 0.0075 

Solid content (X) 10.95 1 10.95 1.90 0.0067 

pH 312.12 1 312.12 5.32 0.025 

Chalcocite (Cc) 4355.44 1 4355.44 74.24 < 0.0001 

Covellite (Co) 2623.98 1 2623.98 44.73 < 0.0001 

Chalcopyrite (Cp) 3238.89 1 3238.89 55.21 < 0.0001 

Pyrite (Py) 2602.31 1 2602.31 44.36 < 0.0001 

Sphalerite (Sp) 2287.92 1 2287.92 39 < 0.0001 

Residual 3109.29 53 58.67   

Cor total 26465.92 63    

Table A7. Analysis of variance results for kinetics rate as process response 

Source Sum of squares df Mean square F-value 
p-value 

(Prob > F) 

Particle size (d80) 2.5839 1 2.5839 7.5469 0.0082 

Collector conc. (C) 1.4637 1 1.4637 4.2753 0.0436 

Frother conc. (F) 5.0389 1 5.0389 14.7174 0.0230 

Solid content (X) 8.5330 1 8.5330 2.4924 0.0087 

pH 4.0242 1 4.0242 11.75393 0.0012 

Chalcocite (Cc) 28.921 1 28.921 84.47173 < 0.0001 

Covellite (Co) 23.8472 1 23.8472 69.65239 < 0.0001 

Chalcopyrite (Cp) 16.5967 1 16.5967 48.47531 < 0.0001 

Pyrite (Py) 8.8358 1 8.8358 25.80754 < 0.0001 

Sphalerite (Sp) 7.7142 1 7.7142 22.53156 < 0.0001 

Residual 18.1459 53 0.3424   

Cor total 155.2911 63    

 


