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Abstract: Spent lithium-ion batteries (LIBs) are good secondary resources for recycle and reuse. To 

develop a process for the separation of Cu(II), Co(II), Mn(II), Ni(II) and Li(I) with high purity from spent 

LIBs and circumvent some drawbacks of the previous work, solvent extraction and ion exchange 

experiments were done in this work. The synthetic hydrochloric acid leaching solution of 3 M was 

employed. Compared to Aliquat 336 (N-Methyl- N, N, N-trioctyl ammonium chloride), extraction with 

Cyanex 301 (bis(2,4,4-trimethylpentyl) dithiophosphinic acid) led to selective extraction of Cu(II) over 

other metal ions. Employing ion exchange with TEVA-SCN resin can completely separate Co(II) over 

Mn(II). After adjusting the pH of Co(II) free raffinate to 3, Mn(II) was quantitatively extracted by the 

mixture of Alamine 336 (mixture of tri-octyl/decyl amine) and PC 88A (2-ethylhexyl hydrogen-2-

ethylhexylphosphonate) with two stage cross-current extraction. The synthesized ionic liquid (ALi-CY) 

was used for complete extraction of Ni(II), whereas Li(I) remained in final raffinate. The metal ions in 

the loaded organic phase were completely stripped with the proper agents (5% aqua regia for Cu(II), 

5% NH3 for Co(II), weak H2SO4 solution for Mn(II) and Ni(II) stripping, respectively). The experimental 

results revealed that purity of the metal ions in stripping solution was higher than 99.9%. A flowsheet 

was suggested to separate metal ions from the HCl leaching solutions of spent LIBs. 
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1. Introduction 

Manufacture of lithium ion batteries (LIBs) needs the supply of pure compounds of cobalt, manganese 

and nickel. Since the ores containing nickel and cobalt are depleting, the recovery of these metals from 

spent LIBs is a kind of sustainable strategy (Nan et al., 2005; Xu et al., 2008; Chagnes and Pospiech, 2013; 

Wang et al., 2015; Ordoñez et al., 2016; Zheng et al., 2018). The combination of hydrometallurgical and 

pyro-metallurgical steps would increases the recovery efficiency of valuable metals present in spent 

LIBs. However, hydrometallurgical processes should be employed to produce pure metals and 

compounds. Therefore, separation of the metal ions from the leaching solution is of vital importance in 

the recovery of valuable metals. For this purpose, precipitation, ion exchange and solvent extraction are 

largely employed during the separation step (Zhu et al., 2012; Joulié et al., 2013; Chen et al., 2015; Xin et 

al., 2016; Chiu and Chen, 2017; Torkaman et al., 2017). 

Metal ions such as Ni(II) and Mn(II) can be separated from weak acidic solution by extraction with 

organophosphorus acidic extractants, whereas the separation of Cu(II) and Co(II) can be carried out 

from strong HCl solution by using amines (Zhao et al., 2010; Suzuki et al., 2012; Torkaman et al., 2017; 

Yao et al., 2018). In addition, the synergistic effect of the mixture contaning amine and 

organophosphorus acids for metal extraction has been also reported (Jakovljevic et al., 2004; Liu et al., 

2015; Gmar et al., 2020; Nguyen and Lee, 2020a). Furthermore, ionic liquids (IL) such as ALi-CY (Fortuny 

et al., 2012), ALi-D2 (Tran et al., 2020), ALi-SCN (Preston, 1982; Nayl, 2010) synthesized by reacting 
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Aliquat 336 (N-Methyl- N, N, N-trioctylammonium chloride) with Cyanex 272 (bis(2,4,4-

triethylpentyl)phosphinic acid), D2EHPA (di(2-ethylhexyl)phosphoric acid) and NaSCN showed their 

extraction power for metal ions and hydrogen ions (Le et al., 2019). In particular, these ILs can be 

employed to separate metal ions from the leaching solutions of spent LIBs which contains Co(II), Ni(II), 

Mn(II) and Li(I) (Preston, 1982; Nayl, 2010; Tran et al., 2020; Nguyen and Lee, 2020b).  

Since the aqueous chemistry of Co(II) and Cu(II) in concentrated HCl solution is similar, it is not easy 

to completely separate these two metal ions. We reported a process to separate Co(II), Cu(II), Mn(II), 

Ni(II) and Li(I) present in the synthetic HCl leaching solution of spent LIBs by employing solvent 

extraction (Nguyen and Lee, 2020a). Although the process looks simple and has some advantages, the 

drawbacks of this process are co-extraction of metal ions during the separation in Cu(II)/Co(II) and 

Mn(II)/Ni(II). Therefore, the purity of the desired metal ions in each stripping solution was not high. In 

order to overcome these drawbacks, we modified the reported process. First, we investigated the 

possibility of complete separation of Cu(II) from the leaching solution of spent LIBs. Secondly, ion 

exchange was employed to separate Co(II) and Mn(II) from the solution. The complete and selective 

extraction of Mn(II) and Ni(II) was also explored. 

In this work, ILs synthesized from Aliquat 336 and mixture of Alamine 336 (mixture of tri-

octyl/decyl amine) and organophosphorus acids such as D2EHPA, PC 88A (2-ethylhexyl hydrogen-2-

ethylhexylphosphonate), Cyanex 272 and Cyanex 301 (the main constituent is bis(2,4,4-trimethylpentyl) 

dithiophosphinic acid) were used to separate the metal ions in the synthetic hydrochloric acid leaching 

solutions. The separation behavior of metal ions was examined by varying the concentration of 

extractants and the acidity of the solution. The extraction and stripping conditions for the separation of 

Cu(II), Co(II), Mn(II) and Ni(II) were investigated. McCabe-Thiele diagrams for the stripping were 

constructed and batch simulation experiments for the multi-stage extraction were performed. TEVA-

SCN resin which was synthesized from TEVA and NaSCN was employed to slectively load Co(II) over 

Mn(II) from the stripping solution. Finally, a process for the separation of Cu(II), Co(II), Mn(II), Ni(II) 

and Li(I) with high purity from the spent LIBs was proposed. 

2. Experimental 

2.1. Reagents and chemicals 

Commercial extractants such as Aliquat 336 (93%) and Alamine 336 (95%) were supported by BASF Co., 

while Cyanex 272 (85%) was bought from Daihachi Chemicals. Co. D2EHPA (95%), PC 88A (95%), and 

Cyanex 301 (70%) were products of Cytec Inc. These extractants were used without further purification. 

Organic phases were prepared by diluting the extractants with kerosene (Daejung Co., > 90%). Decanol 

(Daejung Co., > 98%) was added into the organic solutions (10%v/v) as a modifier to avoid the 

formation of a third phase when needed. Ionic liquid, ALi-CY (R4N·A) was synthesized by contacting 

an equimolar concentration of Aliquat 336 and Cyanex 272 in kerosene in a beaker, then 0.5 M NaHCO3 

was added to the solution (Fortuny et al., 2012). The mixture was stirred to eliminate CO2 gas and 

promote the formation of ALi-CY. During the synthesis of ALi-CY, the transfer of chloride ions from 

the organic to the aqueous was verified by precipitation of chloride ion as AgCl using AgNO3. 

The composition of the synthetic leaching solution is shown in Table 1 (Nguyen and Lee, 2020a). The 

concentration of HCl in the synthetic solution was adjusted to 3 M. The synthetic solutions were 

prepared by dissolving the corresponding amount of metal chlorides such as CoCl26H2O (Junsei Co., > 

97%), CuCl22H2O (Daejung Co., > 97%), MnCl24H2O (Daejung Co., > 98%), NiCl26H2O (Kakuri Co. 

Kyoto Japan, > 96%) and LiCl (Daejung Co., > 98%) in 3 M HCl solution. Sodium chloride (Jedia Co. 

Ohio USA, > 99%) was also added to adjust the concentration of chloride ion in the solution. HCl (Dae 

Jung Chemicals, Korea, 35%) and H2SO4 (Dae Jung Chemicals, Korea, 95%) solutions were diluted by 

doubly distilled water to desirable concentrations. The pH of the solution was adjusted by using sodium 

hydroxide (Duksan Co., >99%) solution. NH3 (Junsei Co., 28%) solution was employed as a eluant agent 

and all the employed chemicals were of analytical grade. 

A commercial TEVA resin (Trialkyl methylammonium chloride, Eichrom, particle size 100-150 m, 

USA) was used without any treatment. The active component of the TEVA resin is an aliphatic 

quaternary amine, which has properties similar to those of typical strong base anion exchange resins. A 
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resin named TEVA-SCN was prepared by contacting 1 g TEVA resin many times with a sufficient 

amount of 2 M NaSCN (Daejung Co., > 98.0%) until the resin was saturated. After synthesis, TEVA-

SCN was washed with water and then employed for ion exchange experiments. Scheme 1 illustrates the 

transformation of TEVA-SCN resin from the corresponding commercial TEVA resin. 

Table 1. The composition of metal ions in the synthetic solution 

Metal ions Cu(II) Co(II) Mn(II) Ni(II) Li(I) 

mg/L 150.0 938.0 150.0 100.0 150.0 

 

Scheme 1. The synthesis of TEVA-SCN from commercial TEVA resin 

2.2. Solvent extraction and ion exchange procedures 

The extraction and stripping experiments were performed by mixing equal volume of aqueous and 

organic phase (each 20 mL) in a screwed cap bottle. When needed, the volume ratio of the two phases 

was varied. The mixtures were stirred for 30 minutes using a Burrell wrist action shaker (model 75, 

USA) at ambient temperature (22  1oC). After shaking, solutions were poured into glass separatory 

funnels for phase separation. Inductively coupled plasma-optical emission spectrometry (ICP-OES, 

Spectro Arcos) was used to measure the metal concentration in the aqueous phase before and after 

extraction. Most of the experiments have been done duplicately with an error of ± 5%. 

Based on the mass of the metal ions in the aqueous phase before extraction [M]i and after extraction 

[M]aq, the extraction percentage (%E) of a metal ion was calculated as:  

%𝐸 =
([𝑀]𝑖−[𝑀]𝑎𝑞)×100

[𝑀]𝑖
.  

The stripping percentage of a metal ion was calculated as: 

 %𝑠𝑡𝑟𝑖𝑝𝑝𝑖𝑛𝑔 =
[𝑀]𝑎𝑞

∗ ×100

[𝑀]𝑜𝑟𝑔
 ,  

where [M]org and [M]*aq are the mass of a metal ion in the loaded organic phase before stripping and in 

the aqueous phase after stripping, respectively. Experimental procedure for the batch simulation of the 

four stage counter-current extraction is shown in scheme 2. 

Batch ion exchange experiments were done by putting some amount of resins into 20 mL synthetic 

leaching solution. The samples were shaken in a shaking incubator (HB-201SF, Hanbeak Scientific Co.) 

for 12 hours at room temperature (22 ± 1oC). The stirring speed was fixed at 400 rpm. After filtering the 

resin by filter paper, the concentration of metals in the solution was measured by ICP-OES and the 

concentration of metals loaded into resin was obtained by mass balance. 

3. Results and discussion 

3.1 Separation of Cu(II) from solutions containing Co(II), Mn(II), Ni(II) and Li(I) 

3.1.1 Cu(II) extraction by Aliquat 336 

The hydrochloric leaching solution of LIBs generally contains metals such as Li(I), Cu(II), Co(II), Mn(II), 

Ni(II) (Wang and Friedrich, 2015; Porvali et al., 2019). In this work, a synthetic leaching solution of spent 

LIBs with 3 M HCl was employed. Table 1 lists the composition of Cu(II), Co(II), Mn(II), Ni(II) and Li(I) 

in the solution. Our previous work showed that Aliquat 336 was able to selectively extract Cu(II) from 

other metal ions. Batch simulation experiments on the three stage counter-current extraction with 

Aliquat 336 resulted in the extraction of only 71.6% of Cu(II) (Nguyen and Lee, 2020a). In order to 

completely extract Cu(II), we did batch simulation experiments for the four stages counter-current 
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extraction. Table 2 represents the concentration of the metal ions in each stage and the overal extraction 

percentage during the these batch simulation exeperiments with 0.3 M Aliquat 336 at unity phase ratio. 

The complete extraction of Cu(II) was accomplished, leaving Mn(II), Ni(II) and Li(I) in the raffinate. 

However, a small amount of Co(II) (6.5%, 60.7 mg/L) was also co-extracted into the organic phase. Since 

the aqueous chemistry of Cu(II) and Co(II) in hydrochloric acid solution is quite similar, it is not easy to 

separate the two metal ions by either scrubbing or stripping (Nguyen and Lee, 2020a). Therefore, we 

did some experiments to find out extraction system by which only Cu(II) can be seletively extracted.  

 

 
*Denote: aq = feed solution; org = fresh solvent; A/(R) = raffinate; E = extract flow; O = loaded organic phase 

Scheme 2. Batch simulation of four stages counter-current extraction 

Table 2. Results from batch simulation experiments for four stages counter-current extraction by 0.3 M Aliquat 

336 at an unity phase ratio. 

Metal ions Co(II) Ni(II) Cu(II) Mn(II) Li(I) 

Stock solution, mg/L 938.0 100.0 150.0 150.0 150.0 

 Raffinate 1, mg/L 938.1  99.9 89.2 149.9 153.2 

Raffinate 2, mg/L 957.6  102.6 48.8 154.1 154.8 

Raffinate 3, mg/L 951.3  102.7 16.6 153.7 152.7 

Raffinate 4, mg/L 877.2  106.7 0 155.3 157.8 

Overall %E 6.5 0 100 0 0 

3.1.2. Cu(II) extraction by Cyanex 301 

Cyanex 301 shows a selectivity for Cu(II) over other metal ions such as Co(II), Ni(II), Mn(II) from strong 

acidic medium (Fleitlikh et al., 2018; Lee and Lee, 2019). For this reason, Cyanex 301 was selected and 

its concentration was varied from 0.02 to 0.3 M. Fig. 1 indicates that Cyanex 301 can selectively extract 

Cu(II) over other metal ions. This is attributed to the high affinity between Cu(II) and sulfur atoms in 

the funtional group of Cyanex 301. According to HSAB (hard soft acid base) principle, Cu(II) is a soft 

acid and the sulfur atom of Cyanex 301 is a soft base and thus they have a strong tendency to interact. 

The extraction reactions of Cu(II) by Cyanex 301 are represented as Eqs. (1) and (2) (Fleitlikh et al., 2018): 

Cu2+
(a) + 2HA(o) = CuA2(o) + 2H+

(a)                                                                   (1) 



5 of 17 Physicochem. Probl. Miner. Process., 58(3), 2021, 1-17 doi: xxx 

 

 
 

where HA = Cyanex 301. 

The structure of Cu-Cyanex 301 complex can be proposed in scheme 3.  

 

Scheme 3. Structure of Cu-Cyanex301 complex (Wieszczycka and Tomczyk, 2011) 

According to the literature (Fleitlikh et al., 2018), Cu(II) in the loaded Cyanex 301 can be reduced to 

Cu(I) by the oxidation action of Cyanex 301. This reduced Cu(I) can undergo polymerization reaction 

as represented in Eq. (2): 

2nCuA2(o) = 2(CuA)n(o) + nA−A(o)                                                                                           (2) 

Eqs. (1) and (2) show the reason why Cyanex 301 has a selectivity for Cu(II) extraction and stripping 

of Cu(II) from the loaded Cyanex 301 is difficult.  

 

Fig. 1. Effect of Cyanex 301 concentration on extraction of metal ions from 3 M HCl solution. Conditions: [Cyanex 

301] = 0.02-0.3 M; diluent: kerosene; [metals]: Cu(II),Co(II), Mn(II), Ni(II) and Li(I) = 150, 938.0, 150.0, 100 and 

150.0 mg/L, respectively; O/A = 1 

3.1.3. Cu(II) stripping from the loaded Cyanex 301  

Aqua regia solution can efficiently strip Cu(II) from the loaded Cyanex 301 (Lee and Lee, 2019). Because 

of some harmful effect of aqua regia on the enviroment, aqua regia diluted with water was employed 

in these experiments. First, the loaded organic phase was prepared by contacting the synthetic leaching 

solutions with 0.02 M Cyanex 301. The concentration of Cu(II) in the loaded phase was 150.0 mg/L and 

no other metal ions were extracted. Stripping results showed that 95.3 % of Cu(II) was stripped from 

the 0.02 M loaded Cyanex 301 by using 5% aqua regia. In this case, Cu(I) which was linked with the 

sulfur-containing ligands might be oxidized by aqua regia solution to generate Cu(II). This accelerated 

the stripping efficiency due to the stronger hydration of Cu(II) complexes in the aqueous phase 

compared to Cu(I) and thus ion with high charge density would preferentially distribute to the aqueous 

phase (Lommelen et al., 2019). The concentration and purity of Cu(II) in the stripping solution was 143.0 

mg/L and 99.9%, respectively. In terms of the separation degree and the purity of Cu(II) in the stripping 

solution, Cyanex 301 is superior to Aliquat 336.  

3.2 Separation of Co(II) from the Cu(II) free raffinate 

3.2.1. Co(II) extraction 

After separation of Cu(II) by Cyanex 301, Co(II), Mn(II), Ni(II) and Li(I) are left in the raffinate and their 

concentrations are 938.0 mg/L, 150.0 mg/L, 100 mg/L and 150.0 mg/L, respectively. Our previous 
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work showed that addition of 2 M NaCl to the raffinate was necessary to selectively extract Co(II) from 

the raffinate by Aliquat 336. After three stage of counter-current extraction by 1.0 M Aliquat 336 at a 

O/A phase ratio of 2, 98.8% Co(II) and 36.9% Mn(II) were extracted (Nguyen and Lee, 2020a). In this 

work, batch simulation experiments of four stage counter-current extraction were done in order to 

completely extract Co(II). In these experiments, 10% (v/v) of decanol was added to the organic as a 

phase modifier and 2 M NaCl was also added to the feed solution. Table 3 shows that Co(II) was 

completely extracted by 1.0 M Aliquat 336 by four stages of counter current extraction. However, 29.9% 

of Mn(II) was aslo co-extracted at this condition.  

Table 3. Results from batch simulation experiments for four stages counter-current extraction by 1.0 M Aliquat 

336 at an A/O ratio of 1/2 

Metal ions Co(II) Ni(II) Mn(II) Li(I) 

Stock solution, mg/L 938.0 100.0 150.0 150.0 

 Raffinate 1, mg/L 120.2 100.4 118.5 149.9 

Raffinate 2, mg/L 11.9 93.7 88.6 147.4 

Raffinate 3, mg/L 0 99.9 61.1 154.3 

Raffinate 4, mg/L 0 115.9 37.7 160.8 

Overall %E >99.9 0 29.9 0 

3.2.2. Co(II) stripping 

Stripping of Co(II) from 1.0 M loaded Aliquat 336 was tested by using HCl solution. The concentration 

of HCl was varied from 0.1 to 2.0 M and the obtained results are displayed in Table 4. The data indicated 

that both Co(II) and Mn(II) was stripped by a HCl solution in the studied range and the stripping 

percentage decreased with the increase in HCl concentration. In our experimental range, 0.1 M HCl was 

the best condition for the stripping of Co(II) and Mn(II) from 1.0 M loaded Aliquat 336. The stripping 

percentage of Co(II) and Mn(II) was 62.0 % and 34.8%, respectively.  

McCabe–Thiele diagram for the stripping of Co(II) from the 1.0 M loaded Aliquat 336 by 0.1 M HCl 

was constructed by varying the volume ratio of the two phases from 5/1 to 1/5. In these experiments, 

the loaded Aliquat 336 was prepared from the batch simulation experiments for four stage counter-

current extraction as shown in scheme 2 and Co(II) concentration in the loaded organic phase was 538.9 

mg/L. McCabe–Thiele plot in Fig. 2 indicates that four stages counter-current stripping is necessary for 

the complete stripping of Co(II) at an A/O ratio of 3/1.  

Table 4. Stripping percentage of Co(II) and Mn(II) from the loaded 1.0 M Aliquat 336. ([Co(II)] and  [Mn(II)] in the 

loaded phase: 538.9 and 44.8 mg/L, respectively) 

Concentration of HCl, M 
Stripping percentage, % 

Co(II) Mn(II) 

0.1 62.0 34.8 

0.3 61.0 33.9  

0.5 59.4 32.2 

1.0 57.5 30.2 

2.0 51.1 29.3 

3.3. Separation of Co(II) from Mn(II) by using ion exchange TEVA-SCN 

3.3.1. Loading behavior of Co(II) and Mn(II) into anion exchanger 

Ion exchange was employed for selective separation of Co(II) and Mn(II) from the stripping solution of 

0.1 M HCl. The concentration of Co(II) and Mn(II) in the stripping solution was 538.9 and 44.8 mg/L, 

respectively. Although the HCl concentration in the stripping solution was mild (0.1 M), TEVA, an 

anion exchange resin was employed on the basis of the reported literature (Nguyen and Lee, 2020a,b).  
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Fig. 2. McCabe Thiele diagram for the stripping of Co(II) from 1.0 M Aliquat 336 by 0.1 M HCl solution 

The adsorption capacity of TEVA and TEVA-SCN resins was compared in this work. The 

concentration of the resins was kept at 15 g/L and the shaking time was 12 hours. Fig. 3 shows that 

Mn(II) was not loaded at all into TEVA-SCN resin, while 3.2% Mn(II) was loaded into TEVA resin. 

Furthermore, the loading percentage of Co(II) into TEVA-SCN (52.4%) was higher than that into TEVA 

(3.3%). The stronger adsorption of Co(II) into TEVA-SCN is ascribed to the stronger tendency of SCN- 

to form complexes with Co(II) compared to chloride ion (Diebler and Högfeldt, 1983; Gammons and 

Seward, 1996; Lee and Oh, 2004). In addition, the difference in complex formation of Co(II) and Mn(II) 

with SCN- resulted in their different adsorption towards TEVA-SCN and thus Co(II) can be selectively 

adsorbed. Therefore, TEVA-SCN was selected for the separation and purification of Co(II) from the 

stripping solution. The loading reaction of Co(II) can be represented as Eq. (3). 

Co2+
(a) + 2Cl-

(a)
 + 4R4N·SCN(o) = (R4N)2Co(SCN)4(o) + 2R4N·Cl(o)                                (3) 

where R4N·SCN represent TEVA-SCN resin.  

To investigate the effect of time on the loading of Co(II) and Mn(II) into TEVA-SCN resin, 10 g/L of 

resin  was  contacted  with the  stripping solution of  0.1 M HCl ([Co] = 538.9 and [Mn] = 44.8 mg/L) by 

 

Fig. 3. Comparison between adsorption capacity of TEVA and TEVA-SCN anion exchange resin for separation of 

Co(II) and Mn(II). Conditions: Feed solution, mg/L: Co(II)-538.9, Mn(II)-44.8; [resin] = 15 g/L; Shaking time: 12h 
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varying shaking time from 1 to 24 hour and the results are displayed in Fig. 4. This figure shows that 

the concentration of Co(II) in the aqueous phase was 350.1 and 318.7 mg/L after 1 and 12 hours of 

loading time by TEVA-SCN resin. These result indicated that loading percentage of Co(II) steadily 

increased from 35.4 to 40.8% as shaking time increased from 1 to 12 hour and then constant, while that 

of Mn(II) was negligible. Therefore, 12 hours was chosen as the optimum shaking time. 

 
Fig. 4. Effect of time on Co(II) and Mn(II) adsorption by TEVA-SCN resin. Conditions: Feed solution, mg/L: 

Co(II)- 538.9, Mn(II)-44.8; [resin] = 10 g/L; Shaking time: 12h 

  

The concentration of TEVA-SCN resin was varied from 2 to 30g/L and the experimental results are 

illustrated in Fig. 5. These experiments were conducted with the stripping solution containing Co(II) 

and Mn(II) as mentioned above in 12 hours. The results show that concentration of Co(II) in the aqueous 

phase gradually decreased from 448.1 to 39.6 mg/L with the increase of the concentration of TEVA-

SCN resin from 2 to 30 g/L. The loading percentage of Co(II) was calculated according to the difference 

in concentration of metals in the aqueous phase before and after adsorption and steadily increased from 

16.8 to 92.7% when the concentration of TEVA-SCN resin increased from 2 to 30 g/L, while that of 

Mn(II) was insignificant. The sharp increase of Co(II) adsorption was assigned to the effect of an excess 

dosage of resin. The SCN- functional group of TEVA-SCN resin may be considered as an accelerant for 

the  formation of Co(SCN)4
2- complex which have strong affinity with the positive charge center of the 

resin. 

 

Fig. 5. Effect of concntration of TVEA-SCN resin on Co(II) and Mn(II) adsorption. Conditions: Feed solution, 

mg/L: Co(II)- 538.97, Mn(II)-44.77; [resin] = 2-30 g/L; Shaking time:12h 
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The loading capacity of TEVA-SCN for Co(II) was measured. These experiments were conducted 

by contacting 1 g of TEVA-SCN with 50 mL of the stripping solution containing Co(II) (538.9 mg/L) 

and Mn(II) (44.8 mg/L) several times until the amount of metal in the resin became constant. The 

cumulative amount of the metal loaded into the resin was calculated by the difference in the 

concentration of metal in the solution after each stage of contact. The results are shown in Fig. 6. The 

cumulative loading of Co(II) increased with the increase of the contact stage and became constant after 

five stages. The loading capacity of TEVA-SCN resin for Co(II) from 0.1 M HCl stripping solution was 

found to 19.8 mg per g of resin. 

 

Fig. 6. Loading capacity of TEVA-SCN resin for Co(II) and Mn(II). Conditions: Feed solution, mg/L: Co(II)- 

538.9, Mn(II)-44.8; resin: 1g; Shaking time: 12h 

3.3.2. Elution of Co(II) from the loaded resin 

A ammonia solution was effective in stripping Co(II) from the loaded ALi-SCN, which was synthesized 

by reacting Aliquat 336 and NaSCN (Nguyen and Lee, 2020b). Moreover, NH3 has a strong tendency to 

form complexes with Co(II). Therefore, ammonia solution was chosen as an eluant for Co(II) from the 

loaded TEVA-SCN resin. First, the loaded resin was prepared by contacting the stripping solution with 

20 g/L of TEVA-SCN. In elution experiments, the concentration of NH3 was varied from 1 to 10 %. 

Fig. 7 shows that the elution percentage of Co(II) from the loaded TEVA-SCN was gradually 

increased to 54.1% with the increase of NH3 concentration to 5% and then constant with the further 

increase of NH3 concentration. Since the amount of Co(II) loaded into the resin depends on the resin 

concentration during loading, the effect of resin concentration on the elution was investigated. For this 

purpose, the loaded TEVA-SCN resin was obtained by varying its concentration from 1 to 20 g/L. These 

loaded resins were eluted by 5% NH3 solution. The elution percentage of Co(II) decreased steadily from 

100% to 54.1% with an increase of the loaded resin concentration from 1 to 20 g/L. This indicates that 

the concentration of Co(II) in the stripping solution decreased from 538.9 to 291.5 mg/L when the loaded 

resin concentration increased from 1 to 20g/L (see Fig. 8). Co(II) was completely eluted as long as the 

concentration of the loaded resin was below 2 g/L. By employing ion exchange with TEVA-SCN, Co(II) 

was completely separated from Mn(II) from the stripping solution and pure Co(II) solution with purity 

higher than 99.9% was recovered.  

3.4 Separation of Mn(II) from the Co(II) free raffinate 

A mixture of Alamine 336 and D2EHPA was effective in separating Mn(II) and Ni(II) from weak HCl 

solution of pH 3.0 (Nguyen and Lee, 2020a). To compare the extraction and the separation of Mn(II) 

over Ni(II) and Li(I), mixtures of Alamine 336 and D2EHPA/ PC 88A/ Cyanex 272 (in which mole 

fraction of organophosphorus acidic extractant was kept  at 0.8)  were  tested. In  these experiments, the 
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Fig. 7. Effect of NH3 concentration on the elution of Co(II) from the loaded TEVA-SCN resin at room 

temperature ([resin] = 20 g/L) 

 

Fig. 8. Effect of loaded TEVA-SCN resin concentration on the elution of Co(II). Conditions: Eluant: 5% NH3; 

[loaded TEVA resin] = 20 g/L 

composition of the raffinate was 105.2 mg/L Mn(II), 100 mg/L Ni(II) and 150 mg/L Li(I) in 3 M HCl 

with 2 M NaCl. First, the pH of the raffinate was adjusted to 3 by adding concentrated NaOH solution. 

In these experiments, 10% decanol was added as a modifier. Fig. 9 shows the variation in the extraction 

of Mn(II), Ni(II), and Li(I) with the nature of the mixture. Although the extraction percentage of Mn(II) 

by mixture of Alamine 336 and Cyanex 272/ D2EHPA was higher than that by the mixture Alamine 336 

and PC 88A, Ni(II) was also extracted by the mixtures of Alamine 336 and Cyanex 272/D2EHPA. 

Namely, 2 M mixture of Alamine 336 and Cyanex 272/(D2EHPA) can extract 100% (91.3%) Mn(II) and 

8.1%/(7.8%) Ni(II), respectively. Although the mixture of Alamine 336 and PC 88A led to lowest 

extraction percentage of Mn(II) (77.2%), no Ni(II) was extracted at all. The formation of stable complexes 

of Mn(II) with PC 88A anions may represent this selective extraction. The equilibrium pH (pHeq) was 

measured after extraction and the results are shown in Table 5. The pHeq value of aqueous phase after 

extraction by three mixtures was in following order: Alamine 336 + D2EHPA (pKa = 3.24) < Alamine 

336 + PC 88A (pKa = 4.51) < Alamine 336 + Cyanex 272 (pKa = 6.37). The increase of pHeq by the mixture 

Alamine 336 and PC 88A/ Cyanex 272 was related to the extraction of hydrogen ion in aqueous phase 

by Alamine 336 (Hoh et al., 1984; Sarangi et al., 2006). Hence, the addition of Alamine 336 can controll 
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the pH values of solution and thus Mn(II) extraction percentage can be maintained. The extraction 

reaction of Mn(II) by the mixture of Alamine 336 and PC 88A can be represented as follows:  

Mn2+
(a) + 2Cl- (a) + (HA)2(o) + 2R3N(o) = MnA2(o) + 2 R3NHCl(o)                                                     (4) 

where HA and R3N represent PC 88A and Alamine 336, respectively. 

 

Fig. 9. Effect of the nature of the extractants on the extraction of metals Mn(II), Ni(II), Li(I). Conditions: [mixture] 

= 2 M, mole faction of acidic extractant = 0.8; diluent: kerosene with 10% v/v decanol as modifier; A/O = 1; pH = 

3; the mixture of Alamine 336 and D2EHPA/Cyanex 272 /PC 88A was denoted as Ala+D2/Ala+CY272/Ala+PC; 

[Mn]:[Ni]:[Li] = 105.2: 100:150 mg/L 

Table 5. The equilibrium pH value after Mn(II) extraction by the mixture of Alamine 336 and D2EHPA / PC 88A/ 

Cyanex 272 

Extractant Alamine 336 and D2EHPA Alamine 336 and PC 88A Alamine 336 and Cyanex 272 

pHeq 2.23 3.15 4.49 

McCabe–Thiele diagram for the extraction of Mn(II) by 2.0 M mixture of Alamine 336 and PC 88A 

was constructed by varying the volume ratio of the two phases from 5/1 to 1/5 and is shown in Fig. 10. 

In these experiments, the aqueous phase contained 105.2 mg/L Mn(II) and 2 M NaCl and its pH was 3. 

Fig. 10 shows that two stages of cross-current extraction are enough for complete extraction of Mn(II) at 

an A/O ratio of 2/3. Subsequently, batch simulation experiments for the Mn(II) extraction by 2 M 

mixture of Alamine 336 and PC 88A were conducted. Table 6 shows that 97.8 % Mn(II) was extracted 

by two stages cross–current extraction, while Ni(II) and Li(I) were not extracted at all in these 

conditions. Therefore, it is possible to comletely separate Mn(II) from Co(II) free raffinate by extraction 

with the mixture of Alamine 336 and PC 88A. After these batch simulation experiments, the equilibrium 

pH was 3.15. Employment of three stages cross–current extraction would completely extract Mn(II).  

Table 6. Results from batch simulation experiments for the two stage cross–current extraction of metals by 2.0 M 

mixture of Alamine 336 and PC 88A from the Co(II) free raffinate at an A/O ratio of 2/3 

Metal ions Li Ni(II) Mn(II) 

Stock solution, mg/L 150 100 105.3 

Stage 1, raffinate, mg/L 150 100 19.4 

Stage 2, raffinate, mg/L 150 100 2.3 

Overall % E 0 0 97.8 

 

 

Ala+D2 Ala+CY272 Ala+PC

0

20

40

60

80

100

 

 

 
E

x
tr

a
c
ti
o

n
 p

e
rc

e
n

ta
g

e
, 
%

Extractant

 Mn(II)

 Ni(II)

 Li(I)



12 of 17 Physicochem. Probl. Miner. Process., 58(3), 2021, 1-17 doi: xxx 

 

 
 

Sulfuric acid solution was selected as a stripping solution for the Mn(II) in the loaded mixture of 

Alamine 336 and PC 88A. The concentration of Mn(II) in the loaded mixture was 102.9 mg/L. In the 

stripping experiments, the concentration of H2SO4 was varied from 0.3 to 2.0 M. The ratio of the organic 

to the aqueous phase was unity. Table 7 shows that sulfuric acid solution could completely strip Mn(II) 

from the loaded mixture of Alamine 336 and PC 88A.   

 

Fig. 10. McCabe Thiele diagram for the extraction of Mn(II) from the Co(II) free raffinate. Conditions: O/A = 1/5-

5/1; [Mn] = 105.2 mg/L; [decanol] =10 vol.%; diluent: kerosene; [mixture of Alamine 336 and PC 88A] = 2 M, 

mole faction of PC 88A = 0.8; pH = 3 

Table 7. Stripping percentage of Mn(II) from the loaded mixture of Alamine 336 and PC 88A by H2SO4 

Concentration of H2SO4, M Stripping percentage, % 

0.3 100 

0.5 100 

1.0 100 

2.0 100 

3.5. Separation of Ni(II) from the Mn(II) free raffinate 

3.5.1. Ni(II) extraction 

After the extraction of Mn(II), the concentration of Ni(II) and Li(I) in the raffinate was 100.0 mg/L and 

150.0 mg/L and solution pH was 3.15. In general, Li(I) is not extracted from weak HCl solution by 

organophosphrous extractants and control of solution pH is essential to maintain high extraction 

performance of Ni(II) (Tait, 1993; Singh et al., 1999; Nguyen and Lee, 2020b). Ionic liquids like ALi-CY 

can efficiently extract either metal ions or hydrogen ions (Le et al., 2019; Tran and Lee, 2020). Therefore, 

ALi-CY was selected in this work to extract Ni(II) from the Mn(II) free raffinate. In order to compare the 

extraction efficiency of Ni(II), Cyanex 272 was also tested. Fig. 11 shows that the concentration of ALi-

CY affects the extraction of Ni(II), while the effct of Cyanex 272 concentration is negligible. Namely, 

Ni(II) extraction increased from 56.8 to 100% when the concentration of ALi-CY increased from 0.01 to 

0.1 M. By contrast, extraction percentage of Ni(II) by Cyanex 272 was lower than 20% in the same 

concentration range from 0.01 to 0.1 M. Li(I) was not extracted at all in these experiments. The 

equilibrium pH after extraction by 0.1 M ALi-CY was 7.98. The increase in the equilibrium pH is due to 

the extraction of hydrogen ions (Fortuny et al., 2012; Le et al., 2019; Tran and Lee, 2020). After the 

extraction of Ni(II), only Li(I) left in the raffinate. 

3.5.2 Ni(II) stripping 

Our previous data showed that sulfuric acid solution was better than HCl solution as a stripping agent 

for Ni(II) from the loaded ALi-CY (Nguyen and Lee, 2020b). The concentration of Ni(II) in the loaded 
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ALi-CY was 100 mg/L. Fig. 12 shows that stripping percentage of Ni(II) gradually decreased with the 

increase of H2SO4 concentration from 0.1 to 2.0 M. The complete stripping of Ni(II) from the loaded 

organic phase is possible by using 0.1 M H2SO4. 

 

 

Fig. 11. Comparison on metal extraction ability between IL(ALi-CY) and Cyanex 272. Conditions: [extractant] 

0.01-0.1 M; diluent: kerosene; A/O = 1; [Ni] = 100 mg/L; [Li] = 150 mg/L; pH = 3.15 

 

Fig. 12. Effect of H2SO4 concentration on the stripping of Ni(II) from 0.1 M ALi-CY loaded organic phase. 

Conditions: [H2SO4] = 0.1-2.0 M; A/O = 1; [Ni] = 100 mg/L 

3.6. Integrated process  

Based on our obtained results in this work, a conceptual process flowsheet was proposed for the 

separation of Cu(II), Co(II), Ni(II), Mn(II), and Li(I) from the synthetic 3.0 M hydrochloric acid leaching 

solution of spent LIBs by solvent extraction and ion exchange and is shown in Fig. 13. The optimum 

conditions for separation of each metal are listed in Table 8. First, Cu(II) can be selectively separated by 

using low concentration of Cyanex 301. The Cu(II) in the loaded of Cyanex 301 can be stripped by 

moderate aqua regia solution. In order to enhance the extraction percentage of Co(II), 2 M NaCl was 

added to the raffinate and most of Co(II) can be extracted into Aliquat 336. However, the loaded Aliquat 

336 contains not only Co(II) but also a small amount of Mn(II) (44.8 mg/L). The Co(II) and Mn(II) in the 

loaded Aliquat 336 were completly stripped by dilute HCl solution. Ion exchange of this stripping 

solution with TEVA-SCN results in selective loading of Co(II) and thus the separation of Co(II) and 

Mn(II) can be accomplished. The Co(II) in loaded resin can be eluted with 5% NH3 solution. The purity 
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of Co(II) in the eluant solution was 99.9%. By adjusting the pH of the Co(II) free raffinate to 3.0, Mn(II) 

can be selectively extracted by the mixture of Alamine 336 and PC 88A in which the mole fraction of PC 

88A is 0.8. The Mn(II) in the loaded mixture can be stripped by a H2SO4 solution. After extraction of 

Mn(II), ALi-CY can extract completely Ni(II) and leave Li(I) in the final rafinate. The purity of Cu(II), 

Co(II), Mn(II) and Ni(II) in the stripping solution was higher than 99.9%. Since Li(I) and Na(I) are 

remained in the raffinate after the extraction of Ni(II), Li(I) compounds can be recovered from the 

raffinate.  

 

Fig. 13. The proposed flowsheet for the separation of Cu(II), Co(II), Mn(II), Ni(II) and Li(I) from the synthetic 3.0 

M hydrochloric acid leaching solution of spent LIBs 

From the obtained results, it can be seen that almost complete separation of the metals can be possible 

in each step by using solvent extraction with commercial extractants and ionic liquids synthesized from 

commercial extractants. Modifying TEVA by contacting NaSCN enhanced both the loading capacity 

and selectivity for Co(II) and thus the purity of Co(II) increased. Besides, the separation degree in each 

step of both solvent extraction and ion exchange is so high that pure solution of each metal can be 

recovered. This is prospective in terms of the feasibility of manufacture of advanced materials from the 

corresponding stripping solution and the final raffinate. On the basis of economics and enviroment, the 

use of the mixture of PC88A and Alamine 336 would circumvent the saponification of 

organophosphorous extractants for the control of the equilibrium pH. Along these lines, the 

employment of synthesized IL like ALi-CY also brought some advantage on the basis of extractbility 

and stability of solution pH compared to respective acidic extractant. Table 9 compares the obtained 

results between the data reported in the previous work (Nguyen and Lee, 2020a) and this work in terms 

of selectivity for metal separation. 
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Table 8. Mass balance and the variation in the extraction and stripping of metals from the synthetic solution 

duirng each separation step 

Process Detail Cu(II) Co(II) Mn(II) Ni(II) Li(I) 

Feed 

solution 
Synthetic leaching solution, 3 M HCl, mg/L 150 938 150 100 150 

Cu(II) 

separation 

Extraction: 0.02 M Cyanex 301, A/O = 1, % 100 <LOD <LOD <LOD <LOD 

Stripping: 5% aqua regia, A/O = 1, % >95.3 - - - - 

Co(II) 

separation 

Extraction: 1.0 M Aliquat 336, A/O = 1/2 with 

four stage counter-current extraction, % 
- >99.9 29.9 <LOD <LOD 

Ion exchange: TEVA-SCN, 538.9 mg/L Co(II) and 

44.8 mg/L Mn(II) in 0.1 M HCl, % 
- >99.9 0 <LOD <LOD 

Eluting: 5% NH3, [resin] = 2g/L, % - >99.9 - - - 

Mn(II) 

separation 

Extraction: 2 M mixture of Alamine 336 and PC 

88A, A/O = 2/3 with two stage cross-current 

extraction, pH = 3, % 

- - >97.8 <LOD <LOD 

Stripping: 0.3 M H2SO4, % - - > 9.99 - - 

Ni(II) 

separation 

Extraction: 1.0 M ALi-CY, A/O = 1,  pH = 3.15, % - - - >99.9 <LOD 

Stripping: 0.1 M H2SO4, % - - >99.9 - - 

Li(I) in 

rafinate 
Final raffinate, mg·L-1 - - - - 150 

Purity, %  >99.9 >99.9 >99.9 >99.9 - 

*Note: 2 M Na(I) is present in final raffinate; “<LOD” denotes under limit of detection. 

 

Table 9. Comparison on the improvement of separation and selectivity for the recovery of metals from leaching 

solution of spent LIBs 

Metals in leaching solution 
Previous work (Nguyen and Lee, 

2020a) 
This study 

Cu(II): Co(II): Mn(II): Ni(II): 

Li(I) = 150:938:150:100:150 

mg/L in 3 M HCl 

-The co-extraction of some ions 

such as Cu(II)/ Co(II) and Mn(II)/ 

Ni(II) was obsevered during 

separation process.  

- Ni(II), Li(I) and Na(I) were left in 

final raffinate. 

- The separation degree of metal 

ions was not high, resulting in low 

purity.   

- Most of the metal ions were completely 

separated in each step. 

- Applying ion exchange with TEVA-SCN 

resin can enhance both the loading 

capacity and selectivity of Co(II).  

- Li(I) and Na(I) were left in final raffinate, 

thus compound of Li(I) can be recovered. 

- Purity of Cu(II), Co(II), Mn(II), Ni(II) was 

over 99.9%. 

4. Conclusions 

Solvent extraction and ion exchange experiments were done to improve the separation degree of the 

previoulsy reported process for the recovery of metal ions with high purity from 3 M HCl leaching 

solution of LIBs containing Cu(II, Co(II), Mn(II), Ni(II) and Li(I). The separation degree and selectivity 

of metal ions in each step of this work was greatly improved compared to the reported process. Firstly, 

Cu(II) ions were completely extracted over other metal ions by Cyanex 301 and then the Cu(II) in the 

loaded organic was quantitatively stripped by 5%(v/v) aqua regia solution. Most of Co(II) and a small 

amount of Mn(II) were loaded into Aliquat 336 phase after the four stage counter-current extraction. 

The application of TEVA-SCN resin showed some merits in either selectivite loading or purification of 

Co(II) from the HCl stripping solution containing Mn(II). Co(II) in the loaded resin was successfully 

eluted by 5% NH3 solution. Among three binary mixtures (Alamine 336 and D2EHPA/Cyanex 272/PC 

88A), Mn (II) was selectively extracted over Ni(II) and Li(I) from the Co(II) free raffinate by the mixture 
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of Alamine 336 and PC 88A at initial pH of 3. The Mn(II) in the loaded organic phase was completely 

stripped by 0.3 M H2SO4. ALi-CY solution can completely extract Ni(II), while Li(I) was left in the final 

raffinate. Ni(II) was completely stripped from the loaded phase by 0.1 M H2SO4. In most of cases, IL and 

amine played an important role for controling solution pH in extraction of Mn(II) and Ni(II). Our 

experiments indicated that the purity of the metal ions in the stripping solutions was higher than 99.9%. 

A flowsheet was proposed to separate the five metal ions by solvent extraction and ion exchange on the 

basis of our data. 
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