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Abstract: In this paper, surface modification of cerussite by thermochemical processing with pyrite was 
studied based on microflotation tests, X-ray powder diffractometry (XRD), X-ray photoelectron 
spectroscopy (XPS) and electron probe microanalysis (EPMA). Microflotation test results showed that 
the surface modification facilitated flotation of the treated cerussite and improved the flotation recovery 
to approximately 90%. The results of XRD analyses confirmed that cerussite was transformed into 
massicot, which then interacted with pyrite to form PbS, PbSO4, PbO·PbSO4 and 4PbO·PbSO4. XPS 
analyses results revealed that both PbS and PbS2 were formed on the mineral surface, and the 
percentage of PbS increased with increasing FeS2/PbCO3 (F/P) mole ratio, which was advantageous for 
the flotation of the modified cerussite. EPMA analyses showed that particles with layered 
configurations were obviously formed after thermochemical processing. The thickness of the products 
at the outer layer of the particles increased when the F/P mole ratio increased. Moreover, the S and O 
contents in the products increased and decreased, respectively. 
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1. Introduction 

Lead is widely used in various industries, such as batteries, machinery manufacturing and optical 
components (Ivanov et al., 2000; Korshin et al., 2000; Sharonov et al., 2008; May et al., 2018). Lead is 
usually extracted from lead sulfide and lead oxide minerals. Galena (PbS) is a representative natural 
lead sulfide mineral and has mainly been used as a raw material for lead production in the past few 
years. With the depletion of sulfide mineral resources, oxide mineral resources are being exploited. 
Cerussite (PbCO3), as a typical lead oxide mineral, mainly exists in oxide ore, and there are considerable 
amounts of lead oxide ore in China (Tang et al., 2014; Wang et al., 2014). Flotation has been the most 
commonly applied method for concentrating the cerussite. 

Cerussite is a kind of semi-soluble salt mineral with a high solubility constant (Shirota et al., 2011; 
Powell et al., 2013). When xanthate is directly added to float cerussite, the lead ions from the mineral 
lattice are initially dissolved and then enter the pulp solution. Then, the lead ions interact with the 
added xanthate to form a lead xanthate precipitate in the bulk solution and at the surface of the cerussite 
(Fuerstenau et al., 1987; Herrera-Urbina et al., 1998). The former situation not only has little effect on 
the surface hydrophobicity of the mineral, but also consumes large amounts of xanthate. The latter 
situation can make the surface of the cerussite hydrophobic. However, lead xanthate is only weakly 
linked to the surface. It is well known that nonferrous sulfide minerals are more easily floated than their 
corresponding oxide minerals. If an effective method was developed to transform the surface of the 
cerussite, even the whole cerussite, into the lead sulfide mineral, the obtained cerussite could be 
effectively floated with conventional collectors. Sodium sulfide (Na2S) and sodium hydrogen sulfide 
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(NaHS) are usually used to convert the surface of the cerussite into lead sulfide (Malghan, 1986; Gush, 
2005). Employing higher or lower amounts of sulfidation agent is not conductive to flotation of the 
cerussite. In other words, accurately adding the sulfidation agent is a difficult task. Moreover, the 
sulfide film formed on the surface easily detaches during the flotation process. 

Recently, multiple methods, including mechanochemical processing (Yuan et al., 2012; Li et al., 
2017), hydrothermal treatment (Li et al., 2012; Liang et al., 2012) and sulfidation roasting (Li et al., 2010; 
Zheng et al., 2015; Chen et al., 2019), have been reported for improving the sulfidation performance. Li 
et al. (2017) and Yuan et al. (2012) adopted a method of co-grinding lead oxide with sulfur under mild 
conditions prior to flotation. The results showed that the floatability of lead oxide cannot be satisfactory 
attributed to the disproportionation reactions of sulfur, resulting in the formation of PbSO4 and PbS. 
Liang et al. (2012) and Li et al. (2012) reported the hydrothermal sulfidation of lead-containing materials 
and their flotation performance. It was confirmed that the sulfurized lead oxide minerals floated well. 
However, the whole sulfidation process had to be performed in an airtight environment. In addition, 
the process required a long reaction time to obtain a high sulfidation extent. Sulfidation roasting may 
be promising for improving the reaction rate and the continuous production. Li et al. (2010) reported 
the sulfidation roasting of a low-grade lead-zinc oxide ore with sulfur in an airtight device. The results 
showed that the sulfidation ratio of lead oxide increased to 98%, and the flotation recovery of lead 
reached 79.5%. Zheng et al. (2015) found that sulfidation roasting could be carried out in an 
incompletely sealed environment by optimizing the reaction process. In addition, it was confirmed that 
only surface modification can facilitate the flotation of cerussite. After surface sulfidation a Pb-Zn oxide 
ore with sulfur at a high temperature, the lead recovery reached 92.3% after a closed-circuit flotation 
test (Chen et al., 2019). 

Generally, the floatability of the cerussite significantly improved after thermochemical processing. 
Pyrite and sulfur are two commonly used sulfidation agents. Pyrite can slowly release sulfur vapor from 
its crystal lattice, which made the sulfidation process be more readily controlled in contrast with sulfur 
(Zheng et al., 2018a; Zheng et al., 2018b). The reported literature mainly focused on the synthesis and 
thermal decomposition of pyrite (Golsheikh et al., 2013; Lv et al., 2015). Our team further investigated 
the interaction mechanism between pyrite and the decomposed cerussite at high temperatures, mainly 
focusing on the evolution process and the characteristics of crystal growth (Zheng et al., 2018a). 
However, there is a lack of information about the changes to the surface of the cerussite caused by 
thermochemical processing. Moreover, the floatability of oxide minerals usually greatly depends on the 
surface sulfidation performance. Therefore, it is essential to deeply investigate the surface modification 
mechanism of cerussite in the presence of pyrite.  

In this study, microflotation tests, X-ray powder diffractometry (XRD), X-ray photoelectron 
spectroscopy (XPS) and electron probe microanalysis-energy dispersion spectrum (EPMA-EDS) were 
conducted to investigate the interaction mechanism between the cerussite and pyrite under 
thermochemical conditions and to further improve the sulfidation performance of the cerussite. 

2. Experimental 

2.1. Materials and reagents 

A crude cerussite sample was provided from a mine in Yunnan Province, China, and was followed by 
artificial removal of gangue such as quartz, hematite and calcite. The purified cerussite sample was dry 
ground in an agate mortar and then sieved to obtain a particle size range from -74 to 37 µm for 
thermochemical processing and various tests. The XRD pattern of the obtained cerussite sample is 
shown in Fig. 1, which revealed that there were nearly no impurities in the sample. Pyrite was used as 
the sulfidation agent in the thermochemical processing. The XRD pattern of pyrite is shown in Fig. 2, 
which indicates that the sample also had few impurities. Nitrogen (99.99%) was used as a protective 
gas.  

Sodium hydroxide (NaOH) and hydrochloric acid (HCl) were used to adjust the pulp pH in the 
flotation experiments. Ethyl xanthate was used as the collector, and terpineol was used as the frother. 

2.2. Thermochemical processing and microflotation tests 

The  pyrite was initially mixed with the prepared cerussite,  and the mixed sample was placed into a 50 
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Fig. 1. XRD pattern of the cerussite 

 
Fig. 2. XRD pattern of the pyrite 

mL glass tube. The tube was slowly pushed into a corundum tube, while nitrogen was inlet as an inert 
gas with a velocity of 1.0 L/min. The whole equipment was heated at a heating rate of 10°C/min. As 
soon as the desired temperature was reached, the mixed sample was kept at the temperature for 60 min. 
After thermochemical processing, the obtained sample was cooled in the presence of nitrogen. Our 
previous studies confirmed that lead oxide was well sulfurized in a temperature range of 450°C to 650°C 
(Zheng et al., 2015; Zheng et al., 2018a; Chen et al., 2019). Therefore, a moderate temperature of 600°C 
was selected in this study. 

Approximately 2 g of the obtained sample was placed in a microflotation cell (40 mL), and then 35 
mL of distilled water was added. The pulp pH was adjusted, followed by the addition of ethyl xanthate 
and terpineol. After 2 min of flotation time, the concentrate and tailing were washed with distilled 
water, filtered and dried. 

2.3. XRD analyses 

The phase changes for the cerussite before and after interacting with pyrite were identified making use 
of a Germany Bruker-axs D8 Advance X-ray powder diffractometer (XRD) with Kα radiation (λ=1.5406 
Å). The obtained data were analyzed by a software (MDI Jade 6) of XRD pattern processing and 
identification.  

2.4. XPS analyses 

XPS is a significantly forceful tool for investigating chemical constituents and chemical states of element 
at the surface. The obtained sample was determined in a Thermo Fisher Scientific equipment with a 



159  Physicochem. Probl. Miner. Process., 57(1), 2021, 156-167 
 

resolution of 0.2 eV, a working pressure lower than 2×10−7 mbar and Al Kα monochromatic irradiation. 
A survey scan of the obtained sample was conducted to detect elemental information. Then, the Thermo 
Avantage software was used for fitting XPS spectrums of specific elements, such as S, O, Pb, Fe and C. 
The spectrometer was calibrated by fixing binding energy of C 1s at 284.8 eV. 

2.5. EPMA-EDS analyses 

The modified cerussite samples were mounted in an epoxy resin and carefully polished. The carbon 
powder was sprayed at the surface of the polished sample prior to EPMA-EDS analysis due to its poor 
conductivity. Then, EPMA-EDS analysis was carried out to investigate the surface morphology and 
constituents of the cerussite before and after the thermochemical proceeding with pyrite. Probe current 
was set to 20 nm and acceleration voltage was set to 20 kV. 

3. Results and discussion 

3.1 Microflotation tests of the cerussite after surface modification 

The effects of ethyl xanthate dosage and pH on the floatability of cerussite after modification with 
different F/P mole ratios are shown in Fig. 3. As shown in Fig. 3(a), the ethyl xanthate had a stronger 
flotation capability towards the modified cerussite. A satisfactory F/P mole ratio was 0.3 or 0.4. At an 
F/P mole ratio of 0.4, the ethyl xanthate floated out 90% of the modified cerussite when the collector 
dosage was fixed as 10×10-5. However, ethyl xanthate at the same dosage only floated out 15% of the 
cerussite modified with an F/P mole ratio of 0.1. It was obvious that the recovery of the modified 
cerussite increased with the increase in the F/P mole ratio. 

As presented in Fig. 3(b), the flotation recovery of the cerussite modified with the same F/P mole 
ratio was slightly affected by the pH in the range of 3-9. When the pH was above 9.0, the flotation 
recovery of the modified cerussite intensively decreased. However, the F/P mole ratios greatly affected 
the flotation recovery of the modified cerussite. The results indicated that flotation of the modified 
cerussite required not only selecting an appropriate F/P mole ratio, but also screening for the optimum 
flotation pH. 

 

Fig. 3. Flotation recovery of the modified cerussite as functions of (a) collector dosage (pH = 7.0) and (b) pH (ethyl 
xanthate dosage of 10×10-5 M) 

3.2 XRD analyses 

Fig. 4 shows the XRD patterns of the cerussite after thermochemical processing with different F/P mole 
ratios. According to this figure, the cerussite completely disappeared (Eq. (1)), while Pb-bearing species, 
such as PbS, Pb2(SO4)O, Pb5O4SO4 and PbO, were formed with the introduction of pyrite at an F/P mole 
ratio of 0.1. With a further increase in the F/P mole ratio, the peak intensity of PbS increased. However, 
the peak intensities of Pb2(SO4)O and Pb5O4SO4 decreased and even disappeared. Therefore, the increase 
in the F/P mole ratio was advantageous to the generation of PbS.  

To investigate the thermochemical reaction mechanism of the cerussite and pyrite, their equilibrium 
phase composition was calculated by the equilibrium composition module of Out-okumpu HSC 
6.0(Roine, 2002). The  calculations were conducted for 1 kmol of PbCO3 at 600°C at 1 atm, and the results 
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Fig. 4. XRD patterns of the cerussite modified with different F/P mole ratios 

are shown in Fig. 5. From Fig. 5(a), the generated PbO was completely transformed into PbS (Eqs. 2-3) 
when the amount of pyrite was fixed at 0.6 kmol, which corresponds to an F/P mole ratio of 0.6. When 
the amount of pyrite was below 0.6 kmol, the generated PbO interacted with the pyrite or sulfur vapor 
originating from the decomposition of pyrite, forming PbS, PbSO4 (Eqs. (3, 4)) and PbSO4-bearing 
intermediates (Eqs. (5, 6)), such as PbO·PbSO4 and 4PbO·PbSO4, as shown in the expanded view (Fig. 
5(b)), which agreed with the results obtained in Fig. 4. According to Fig. 3, the recovery of the treated 
cerussite reached 90% when the F/P mole ratio was fixed at 0.3 or 0.4. Both values were below the 
theoretical F/P mole ratio (0.6) for thoroughly transforming PbCO3 into PbS, which indicated that only 
the outer layer of the lead oxide mineral was transformed into PbS. 

                           (1) 

               (2) 

                 (3) 

                (4) 

               (5) 

               (6) 

 

Fig. 5. Equilibrium composition of the cerussite after thermochemical processing as a function of pyrite dosage  
(1 kmol PbCO3, 600°C, 1 atm) 

3.3. XPS analyses 

Fig. 6 shows the full range XPS spectra of the cerussite before and after thermochemical processing with 
pyrite. According to the XPS pattern, the key elements, such as Pb, S, O and C showed strong signals. 
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In addition, the peak intensity of S and O increased and decreased, respectively, with the increase in the 
F/P mole ratio. Table 1 lists the surface concentrations of Pb, S, O, C and Fe atoms. From this table, the 
concentrations of Pb, Fe, O, C and S atoms on the surface of the untreated cerussite were 13.33%, 0.61%, 
49.64%, 36.42% and 0%, respectively. After thermochemical processing of the sample with a lower F/P 
mole ratio (Sample B), the concentrations of Pb, Fe and S atoms increased, whereas the concentration of 
O atoms decreased. This result can be attributed to the decomposition of PbCO3 and the introduction of 
pyrite. With the increase in the F/P mole ratio (Samples C and D), the concentration of Pb and O atoms 
overall decreased, but the concentration of Fe and S atoms increased. Additionally, the concentration of 
C atoms fluctuated after the thermochemical treatment, which could be attributed to the introduction 
of polluting carbon and the residue PbCO3. 

 
Fig. 6. Full range XPS spectrums of the cerussite before and after thermochemical processing with pyrite (Sample 

A: Raw sample; Samples B-D: F/P mole ratios of 0.1, 0.2 and 0.4) 

Table 1. Atomic concentration of elements as determined by XPS 

Samples  
Atomic concentration (%) 

Pb4f Fe2p O1s C1s S2p 
A 13.33 0.61 49.64 36.42 0 
B 15.24 0.73 34.64 39.80 9.58 
C 13.94 2.06 31.62 36.96 15.41 
D 12.38 3.69 32.29 37.00 14.65 

Fig. 7 shows the high-resolution XPS spectra of Pb4f, S2p, O1s and C1s, and their respective 
assignments and properties are listed in Tables 2-5. Fig. 7(a) presents the Pb4f spectra of the cerussite 
before and after thermochemical processing. The Pb4f XPS spectrum of the un-treated cerussite (Sample 
A) showed a doublet attributed to the Pb4f7/2 and Pb4f5/2 levels. Therefore, both peaks had the same 
characteristics. The Pb4f7/2 binding energy at 138.86 eV was ascribed to PbCO3 (Cozza et al., 1992; Feng 
et al., 2016). The fitting results of the Pb4f7/2 peak in the spectrum of the cerussite after thermochemical 
processing with an F/P mole ratio of 0.1 (Sample B) indicated that the peak consisted of three 
components. Combined with Table 2, the peak at a binding energy of 137.32 eV with a proportion of 
47.51% was attributed to Pb in the generated PbS (Lara et al., 2011; Mikhlin et al., 2015). The other peak 
at a binding energy of 138.31 eV with a proportion of 50.79% was attributed to Pb in the generated PbO 
(Gupta et al., 1996; Kannan et al., 2014). The third peak at a binding energy of 139.58 eV with a 
proportion of 1.7% was ascribed to the Pb in the generated lead sulfates (Chastain, 1992; Zhou et al., 
2014), such as PbSO4, PbO·PbSO4 and 4PbO·PbSO4. With the increase in the F/P mole ratios (Samples 
C and D), the proportion of Pb in the generated PbS and lead sulfates overall increased, but the 
proportion of Pb in the generated PbO decreased, which corresponds to the changes of the peak 
intensity in Fig. 7(a). These results were also supported by the XRD (Fig. 4) and thermodynamic analyses 
(Fig. 5). 
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The S atomic concentration on the surface of the treated cerussite confirmed that the cerussite was 
sulfurized by pyrite at a high temperature, as shown in Table 1. However, it could not reveal the 
chemical state and composition of S in the treated samples. Therefore, the S2p XPS analyses of the 
cerussite after thermochemical processing needed to be analysed in detail, as shown in Fig. 7(b) and 
Table 3. Fig. 7(b) presents that the S2p XPS spectrum consisted of a doublet structure of S2p3/2 and S2p1/2 
levels. Although the strength of S2p3/2 is greater than that of S2p1/2, the peaks had the same properties. 
The results of curve fitting of the S2p3/2 peak showed three well separated peaks in binding energy 
ranges of 160.47-160.84 eV, 161.91-162.29 eV and 167.95-168.54 eV. By consulting the available literature 
on the binding energy of S2p3/2 (Smart et al., 1999; Ikumapayi et al., 2012; Feng et al., 2016; Jia et al., 
2019; Wang et al., 2019), the components in the abovementioned binding energy ranges could be 
assigned to the sulfur in the generated PbS (Ikumapayi et al., 2012; Jia et al., 2019), PbS2 (Smart et al., 
1999; Feng et al., 2016) and lead sulfates (Ikumapayi et al., 2012; Wang et al., 2019), such as PbSO4, 
PbO·PbSO4 and 4PbO·PbSO4. These results further confirmed the results obtained by analysing the 
Pb4f7/2 XPS spectra in Fig. 7(a). According to Table 3, the percentage of S in PbS increased, but the 
percentage of S in PbS2 and lead sulfates decreased with the increase in the F/P mole ratios. Generally, 
more PbS formed on the mineral surface was advantageous to improve the flotation performance. These 
results further agreed with the increase in the flotation recovery of the cerussite modified with a higher 
F/P mole ratio (0.4), as shown in Fig. 3. 

Figs. 7(c-d) show the high-resolution O1s and C1s XPS spectra of the cerussite before and after 
thermochemical processing, and Tables 4 and 5 presents both the assignments and properties. In the 
spectrum of the untreated sample (Sample A), the fitting of the O1s peak, as shown in Fig. 7(c), revealed 
two components located at 531.03 and 532.49 eV. Combined with Table 4, the peak centred at 531.03 eV 
with an average proportion of 94.86% was associated with O in PbCO3 (Feng et al., 2016). The other 
peak was related to O in the C-O functional group (Nowak and Laajalehto, 2007; Bai et al., 2018). The 
fitting of the C1s peak, as shown in Fig. 7(d), revealed three components located at 284.76, 285.69 
and289.32 eV. The peak located at 289.32 eV with an average proportion of 45.85% (Table 5) was associa- 
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ted with C in PbCO3 (Buckley et al., 2003; Feng et al., 2016), which further agreed with the fitting results 
of Pb4f and O1s. The other two peaks located at 284.76 and 285.69 eV were ascribed to carbon 
contamination in the form of C-H and C-O species (Bai et al., 2018). In the spectra of the cerussite after 
thermochemical processing (Samples B-D), the fitting of the O1s peak, as shown in Fig. 7(c), revealed 
four components in binding energy ranges of 529.51-529.86 eV, 531.17-531.42 eV, 532.03-532.16 eV and 
533.25-533.60 eV, which were related to O in the generated PbO (Ikumapayi et al., 2012), sulfates 
(Chastain, 1992), C-O species (Bai et al., 2018; Nowak and Laajalehto, 2007) and O=C-O functional 
groups (Nowak et al., 2000), respectively. According to Table 4, the percentage of O in PbO decreased, 
but the percentage of O in the lead sulfates increased with the increase in the F/P mole ratio, which was 
consistent with the thermodynamic analyses. The fitting of the C1s peak, as shown in Fig. 7(d), revealed 
three components in binding energy ranges of 284.83-284.84 eV, 286.15-286.21 eV and 288.21-288.52 eV. 
Only the component in the binding energy range of 288.21-288.52 eV was contributed by C in the residue 
PbCO3 and even PbO·PbCO3 (Buckley et al., 2003; Feng et al., 2016). The other two components were 
associated with the pollution caused by the functional groups of C-H and C-O (Bai et al., 2018). From 
Table 5, the percentage of C in the residue PbCO3 decreased, which further revealed that the 
introduction of the sulfidation agent facilitated the decomposition of PbCO3. 

Table 2. Assignment and properties of the Pb4f7/2 XPS 

Samples  
Binding energy (eV) Atomic concentration ratio (%) 

PbS PbO Sulfates PbS  PbO Sulfates 
A - 138.86 - - 100.00 - 
B 137.32 138.31 139.58 47.51 50.79 1.70 
C 137.46 138.53 139.47 59.61 26.11 14.28 
D 137.52 138.04 139.11 54.36 23.51 22.13 

Table 3. Assignment and properties of the S2p3/2 XPS 

Samples 
Binding energy (eV) Atomic concentration ratio (%) 

PbS PbS2 Sulfates PbS  PbS2 Sulfates 
B 160.47 161.91 167.95 53.65 13.26 33.09 
C 160.71 162.29 168.54 66.39 10.32 23.29 
D 160.84 162.29 168.29 75.22 7.24 17.54 

Table 4. Assignment and properties of the O1s XPS 

Samples  
Binding energy (eV) Atomic concentration ratio (%) 

PbO Sulfates C-O O=C-O PbO Sulfates C-O O=C-O 
A 531.03 - 532.49 - 94.86 - 51.14 - 
B 529.51 531.17 532.03 533.25 27.05 57.59 9.35 6.00 
C 529.72 531.42 532.07 533.60 13.88 59.01 21.09 6.01 
D 529.86 531.32 532.16 533.58 13.10 63.12 19.14 4.65 

Table 5. Assignment and properties of the C1s XPS 

Samples  
Binding energy (eV) Atomic concentration ratio (%) 

C-H C-O PbCO3 C-H C-O PbCO3 
A 284.76 285.69 289.32 42.06 12.08 45.85 
B 284.84 286.21 288.52 78.57 7.69 13.74 
C 284.84 286.15 288.26 71.86 18.56 9.58 
D 284.83 286.15 288.21 78.78 11.51 9.70 

3.4. EPMA analyses 

Fig. 8 shows the EPMA images and EDS line scanning spectra of the cerussite after thermochemical 
processing with different F/P mole ratios. From Figs. 8 (a-c), there were no obvious changes at the 
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outlayer of most of the obtained massicot (PbO) particles after thermochemical processing with pyrite 
at an F/P mole ratio of 0.1. When the F/P mole ratio increased to 0.2, a large number of particles with 
an obvious layered configuration was formed. With a further increase in the F/P mole ratio, the 
demarcation line between the massicot and the generated sulfur-bearing mineral nearly disappeared 
and the layered configuration became more compact. 

Figs. 8 (a1-c1) are enlarged views of Figs. 8 (a-c), and their respective EDS line scanning spectra are 
shown in Figs. 8 (d-f). Overall, the  interior of the  particles was  mainly composed  of  the  massicot and 

 
Fig. 8. EPMA images and EDS line scanning spectrums of the cerussite after thermochemical processing with 
pyrite (a, a1 and d: F/P mole ratio of 0.1; b, b1 and e: F/P mole ratio of 0.2; c , c1 and f: F/P mole ratio of 0.4) 
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the outlayer of the particles was composed of sulfur-bearing compounds, such as lead sulfide (mainly) 
and sulfates. The sulfur content at an F/P mole ratio of 0.1 (Fig. 8 (d)) slightly fluctuated over the whole 
section of the particle, and the signal of S presented a straight line in Fig. 8 (a1). When the F/P mole 
ratio increased to 0.2, the sulfur content at the outer section of the particle increased, corresponding to 
the intensification of the sulfur signals. With a further increase in the F/P mole ratio, the sulfur content 
at the outer section of the particle further increased, corresponding to a further intensification of the 
sulfur signals. In addition, it was observed that the thickness of the generated sulfur-bearing 
compounds increased with the increase in the F/P mole ratio. The thickness of the products increased 
to approximately 10 µm at an F/P mole ratio of 0.4, as shown in Fig. 8 (c1). However, the oxygen content 
at the outer section of the particle decreased, in contrast with the sulfur content, but the lead content 
showed little change, which revealed that the sulfidation reactions occurred at the surface of the 
obtained massicot (PbO) to form mainly PbS. Combined with Fig. 3, the recovery of the cerussite after 
modification with the same mole ratio (0.4) reached approximately 90% under moderate flotation 
conditions. These results confirmed that modification at only the outer of the cerussite, not complete 
transformation of the cerussite, can facilitate the flotation of the mineral. 

4. Conclusions 

The current work systematically investigated the surface modification of cerussite by thermochemical 
processing with pyrite. Based on the above results and discussions, the following conclusions are 
reached: 
(1) The cerussite after thermochemical processing with pyrite at a suitable F/P mole ratio showed good 

floatability, and the flotation recovery increased to approximately 90%. The increase in the F/P mole 
ratio was conducive to flotation. In addition, increasing the collector dosage and the pH was 
beneficial to the flotation, but a higher pH was disadvantageous for the flotation.  

(2) The concentration of O and S atoms on the surface of the modified cerussite decreased and increased, 
respectively, with the increase in the F/P mole ratio. Lead sulfide species including mainly PbS and 
PbS2, were formed on the mineral surface, and the percentage of PbS increased with the increase in 
the F/P mole ratio, which was beneficial for the flotation of the treated cerussite. Other species, 
including PbSO4, PbO·PbSO4 and 4PbO·PbSO4 were also detected at the mineral surface.  

(3) An obvious layered configuration was formed and became more compact with the increase in the 
F/P mole ratio. The thickness of the products increased to approximately 10 µm at an F/P mole ratio 
of 0.4, and this value was below the theoretical F/P mole ratio (0.6) for complete transformation of 
PbCO3 into PbS. The sulfur content at the outer of the particle increased, whereas the oxygen content 
decreased with the increase in the F/P mole ratio.  
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