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Abstract: Decreases in the copper grade, waste disposal, energy supply, and water scarcity are some of 
the most critical challenges for the copper mining industries. One of the alternatives to counteract the 
water scarcity is the use of seawater, whether raw, partially desalinated, or desalinated. The use of 
seawater implies the generation of several compounds as a result of the interaction of ions in waters 
and ores. For this reason, it is required a greater understanding of these compounds generated on 
mineral processing, being Pourbaix diagrams used to estimate the possible compounds that will be 
formed in an aqueous medium for a given metal ore. In this paper, the effect of temperature, salinity, 
and Cu-concentration on the stability of the copper-solid species was investigated by constructing 
Pourbaix diagrams for different copper ore types with seawater. The results show that the corrosion 
areas decrease when the temperature increases for both oxidized and sulfide minerals. It was confirmed 
that the concentration is a critical variable that influences the size of corrosion areas. In terms of the 
effect of the other ions that seawater contains, carbonate, chloride, and bromide affect the stability of 
the Cu-solid species. The proposed diagrams serve as a useful tool to predict the stable species that may 
be obtained when seawater is used. The use of seawater in mining is an essential issue because it is 
considered as a more sustainable alternative instead of use freshwater or desalinated seawater, 
especially in locations with complex water availability, as is northern Chile.  
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1. Introduction 

In Chile, mining is one of the main economic activities, reaching 10.1% of the GDP in 2018 (COCHILCO, 
2019). Chile reserves are varied, including copper, gold, silver, molybdenum, nitrates, lithium, 
potassium, iodine, among other deposits. Its reserves can vary from 6.7% of the world’s gold, 27.7% of 
copper, and 100% of natural nitrates (Cisternas and Gálvez, 2014). All this large-scale production faces 
significant challenges, within which highlight energy supply, water scarcity, waste disposal, and the 
decline in the ore grades. Thus, for copper mining industries, including the total of mining operations, 
i.e., hydrometallurgical and concentration paths, the copper ore grade declines in 51% between 2001 
and 2015 (Lagos et al., 2018). For this reason, to compensate for the decreasing grades, larger quantities 
of ore must be processed to accomplish production goals; as a result, the consumption of water and 
energy increases, as well as mining wastes and greenhouse gas (GHG) emissions. This situation will 
increase in the future since the ore copper grades are expected to continue to decline, which will imply 
significant upward pressure on the GHG, energy, and water intensity of copper production (Northey et 
al., 2013). Therefore, the mining activity is projected to develop these challenges not only from an 
economic and technical perspective but also from incorporating the focus environmental and social, 
under the global sustainable development perspectives (Ali et al., 2018). 

In the sustainability context, is that the water supply has become critical, mainly due to its demand 
and scarcity. Of all the water available on the planet, the freshwater only represents about 2.5%, 1.9% of 
this resource is on polar ice caps and glaciers, 0.6% is groundwater, and about 0.01% is on the surface 
(Cavin, 2017). Also, climate change, economic development, and population growth will affect the total 
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water availability in the world. In a study accomplished by Luo et al. (2015), several countries are 
analyzed according to demands and supply projections estimating the water stress for specific periods. 
There are countries as Estonia, Namibia, and Chile, among others, which could face a significant effect 
on water stress from 2010 to 2040. Specifically, Chile would increase its water stress index by 53%. Water 
scarcity is and will be one of the main issues for countries, extending even beyond the national 
boundaries (Hoekstra and Chapagain, 2008). Although mining operations are considered a low water 
consumer operation, they can locally affect the natural flows and the quality of the natural resources 
(Northey et al., 2016). For example, in the Antofagasta region (Chile), mining operations consume 
between 60-70% of the water resources. For Chilean mining, these problems are even worsened, due 
most of the mining deposits are located in desert areas and high altitudes. The more valuable copper 
mines are situated in the Atacama Desert, the aridest area on earth (Clarke et al., 2006),  and at altitudes 
that vary between 600 and 3,000 meters above sea level. The desert and the high altitude makes access 
to any water source even more complicated. 

1.1. Mining and seawater 

For mining processes, one of the alternatives to counteract the water scarcity is the use of raw, partially 
desalinated or desalinated seawater (Cruz et al., 2019). Particularly in Chile, from 2010 to 2015, the use 
of seawater with or without desalination increased more than ten times. Currently, seven mining 
companies are using raw seawater in their processes, while there are ten desalination plants and eleven 
new projects for the operation of new desalination plants (Gálvez and Cisternas, 2017; Herrera-León et 
al., 2019).  These plants operate through reverse osmosis (RO), which is the most used technology 
worldwide to desalinate seawater and brackish water, mainly due to its capability to treat large 
volumes. Examples of RO plants in mine operations are Pampa Camarones Mining, BHP Billiton, 
Tocopilla Mining Company, and Antofagasta Minerals Group in Centinela Mining. The seawater 
consumption by Chilean copper mining is 23% (COCHILCO, 2019); it is expected to 2027, an increase 
up to 46% respect to the total water requirement. According to COCHILCO (2019), the higher water 
consumption in the copper industry is in the concentrator plant with over 60% of the total, while the 
hydrometallurgy process (leaching) consumes only the 13% of the total. Chile and Peru, the two largest 
copper-producing countries, will see an increase in water supply from desalination projects (Dixon, 
2013). 

Despite the RO provides water with high quality that generally does not affect the mineral 
processing, it involves two main environmental drawbacks: i) a discharged brine with a salinity twice 
seawater is released to the ocean, together with chemical reagents such as antiscalants, coagulants and 
cleaning additives, which may cause adverse environmental effects (Elimelech and Phillip, 2011; 
Ordóñez et al., 2015) and ii) reverse osmosis is an energy-intensive process, which is commonly 
associated with fossil-based power generation that generates greenhouse gas emissions (Cruz et al., 
2019).  

In this sense, there are several studies about the use of raw seawater directly in the mining processes. 
The effect of seawater on flotation has been studied for several research groups and reviewed by several 
authors (Castro, 2018; Jeldres et al., 2016; Suyantara et al., 2018; Wang and Peng, 2014). The seawater 
affects different phenomena such as bubble stability and pulp rheology. The effect of seawater ions and 
their aqua-complexes can impact positively and negatively depending on the mineral studied, 
operational conditions, and objectives searched. For example, the presence of copper ions can activate 
sphalerite and pyrite (Mu and Peng, 2019; Wang et al., 2019). Positive, negative, and uncharged copper 
species interact with mineral surfaces affecting its floatability. Wang et al. (2019) found that the 
adsorption and precipitation of hydrolyzed copper ions result in sphalerite activation. In another study, 
it was discovered that seawater significantly increases pyrite recovery in flotation when chalcopyrite is 
also present (Mu and Peng, 2019). This was explained by the increased copper activation on the pyrite 
surface because chalcopyrite is more electrochemically active with more substantial oxidation in 
seawater than in freshwater. Therefore, the understanding of the stability species of copper in seawater 
is essential.   
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Regarding hydrometallurgical processes, seawater is used in leaching due to the high concentration 
of chloride that acts as an oxidizing agent (Torres et al., 2015). Watling (2014) made a review of the acidic 
chloride leaching options and resumed their advantages as (i) increased solubility of iron and other 
metals; (ii) better redox properties due to the stabilization of the Cu(I)/Cu(II) redox couple as chloride 
complexes; (iii) faster leaching kinetics; (iv) better diffusion due to the formation of porous elemental 
sulfur; and (v) low pyrite reactivity. Some of their disadvantages are: (i) the corrosive effect of chloride; 
(ii) the diminution of the particle size in atmospheric temperature-pressure operation; and (iii) the 
difficulties in the electro-winning plant. Also, increased total dissolved solids, viscosity, and density of 
the process water produce increased amounts of secondary precipitates that may trek through the bed, 
block solution channels, and reduce permeability in the heap leaching stage (Miller, 1998). Several 
studies have shown that leaching using seawater can produce better recoveries (Hernández et al., 2018, 
2015). 

Seawater contains chemical elements and compounds such as sodium, magnesium, potassium, 
calcium as cations and chloride, carbonate, sulfate, and bicarbonate as anions, among others. Some 
elements are challenging to quantify because they appear in extremely low concentrations, and usually 
average data are given. The total of compounds reaches 3.5%, and the rest 96.5% is pure water. This 
composition varies from one place to another, but the relative composition is considered constant 
(Cisternas and Gálvez, 2017). Depending on the local evaporation, the salinity varies from 30 to 40 g/L. 
The seawater also contains gases such as nitrogen, carbon dioxide, and oxygen (Valderrama et al., 2017). 
The dissolved oxygen determines the oxidation/reduction behavior of the seawater, the dissolved CO2 
(or H2CO3) produces seawater to become acidic. At the same time, B(OH)3/B(OH)4- and HCO3-/CO32- 
ions are responsible for their basic behavior, being the HCO3- molarity concentration in seawater close 
to 2.8 times more than in freshwater, being the natural pH of seawater around 7.8-8.2 (Castro, 2018). 
The amount of H2CO3 at the natural pH of seawater is significantly low compared to ions HCO3-/CO32. 

The presence of these elements affects the physical and chemical properties of the seawater. Salinity 
and temperature are the two most important variables that determine the properties of seawater. For 
example, density and viscosity increase with salinity and may intervene in the fluid-transport in plants. 
Other properties as vapor pressure and surface tension are related to water evaporation and interaction 
with solid particles, respectively, and can affect, for example, the leaching process. This variability can 
impact positively or negatively the mining operations. 

On the other hand, the determination of the characteristics of seawater is given by the chemical 
speciation, which implies that an element can be present in different chemical forms depending on the 
solution conditions. The speciation of seawater compounds depends strongly on pH. In the case of trace 
metals present in the seawater, they can be classified by the inorganic ligands that complex them into 
five groups (hydrolyzed, carbonate, chloride, free, and transition metals) (Byrne et al., 1988). Within the 
number of elemental forms hydrolyzed in seawater, i.e., metals involved in the chlorine complexation, 
Cu(I), Ag(I) and Au(I), are slightly pH-dependent (Byrne, 2002). The same occurs with metals in the free 
form, except Iron (II) and Nickel (II) that form carbonate complexes. Metals that complexes strongly 
with hydroxides a decrease in pH will no change their free form, only the amount of hydroxides per 
metal (e.g., from Al(OH)4+ to Al(OH)3). The metals that complexes with carbonate as Cu(II), UO2(II), 
and rare earth are strongly affected by pH, increasing in their free form (Millero et al., 2009). 

1.2. Pourbaix diagrams 

Pourbaix diagrams, which are also called Eh-pH diagrams, were developed by Marcel Pourbaix in his 
Ph.D. thesis. He is the author of the well-known Pourbaix diagram handbook, where an extensive 
collection of diagrams for various aqueous systems can be found (Pourbaix, 1966). The Pourbaix 
diagrams are employed in almost any area associated with aqueous chemistry due to take into account 
chemical and electrochemical stability for different redox states of a particular element at specific 
potential (ESHE) and pH (Haung, 2016). In an aqueous mixture at fixed Eh-pH-condition, a large 
number of different species exist simultaneously. The Pourbaix diagrams simplify the analysis by 
showing only the predominant species in each stability area. Besides, lines represent the Eh-pH-
conditions where the adjacent species are in the equilibrium state (Kobylin et al., 2014). For this reason, 
it is said that Pourbaix diagrams define the stability domain of electrolyte, metal, and related 
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compounds (e.g., oxides, hydroxides, and hydrides). Complexing agents, such as ammonia, bromides, 
carbonates, chlorides, cyanides, and sulfates, can alter visibly the areas of the diagrams, product of the 
formation of highly stable complexes in solution. 

The use of the Pourbaix diagram has many applications, such as coating, electric cells, industrial 
electrolysis, and water treatment. One of its primary functions is in the corrosion area, being useful for 
the estimation of corrosion products at different pH, potential combinations, and the conditions to 
reduce or prevent corrosion (Belmonte et al., 2015; Su et al., 2016). Also, it has been used in fields as 
varied as are nanotechnology or geology. Dezfoolian et al. (2015) used the Pourbaix diagrams of copper 
and zinc in aqueous electrolytes to predict the possible species formed when they synthesized 
simultaneously copper and zinc oxides nanostructures by anodization of brass foil in alkaline aqueous 
solution at room temperature. Yagi et al. (2009) synthesized Cu and Cu2O nanoparticles selectively by 
chemical reduction from CuO aqueous suspension. They demonstrated that the most stable chemical 
species could be determined by comparing the mixed potential with the information from the Pourbaix 
diagrams, where the kind of species synthesized can be controlled by the mixed potential, which is 
altered by pH and temperature, both easily controllable. In the case of geology, it is having been widely 
used to explain the geological processes associated with fluids. Yang et al. (2014) constructed the 
Pourbaix diagram for the Si-Fe-Mn-H2O system at 300 °C for hydrothermal fluid and at 25°C for 
seawater, to decipher precipitation conditions at the Pacmanus hydrothermal field. Through the 
integration of the Eh-pH diagrams, they were able to explain the formation of Si-Fe-Mn solid species 
when hydrothermal fluid is mixed with seawater at different conditions of pH and temperature. 
Pourbaix diagrams have applications to flotation systems; for example, they have been used to study 
the enargite depression in seawater (Yepsen et al., 2019). 

Pourbaix diagrams have also been applied in hydrometallurgical processes. von Bonsdorff et al. 
(2005) studied the application of different electrodes for the measurement of the potential analyzing the 
stability of copper ions in the HydroCopper process, in which the chalcopyrite ore (CuFeS2) is processed 
using a chloride base without the addition of acid or base reagents. Fan et al. (2013) proposed an alkaline 
leaching process with NaOH to separate tellurium and selenium selectively from a high tellurium 
bearing material. They constructed the Pourbaix diagram for the Cu-Te-Se-H2O system to compare 
thermodynamic calculation data with experimental results, and they concluded that the experimental 
results with calculation data agreed reasonably well. There are several applications in leaching studies; 
for example, the potential-pH diagram of the Pb/Ag/Bi-H2O system was used to assess the possibilities 
of the selective leaching of lead and silver (Xing et al., 2019). In another example, Watling (2014) studied 
the leaching of a low-grade copper sulfide ore in three media, freshwater, seawater, double-strength 
seawater. They constructed diagrams for copper, iron, and aluminum to predict the possible 
compounds formed for the start and end of the 28 days of leaching. Some of its conclusions were that 
the use of saline water in the heap leaching could result in lower extraction efficiency, channeling, and 
reducing heap permeability, due to the increase in the formation of secondary precipitates. 

It is essential to consider all the positive and negative effects of using seawater on mineral processing. 
For this, we can predict the possible compounds to be formed for a given metal in an aqueous medium, 
this being possible using the Pourbaix diagrams. In the literature exists many Pourbaix diagrams for 
different metals in freshwater. Still, it is rare to find these diagrams for the same metals in seawater, 
with which the present study seeks to contribute to this lack of information with the proposal of a 
methodology to generate the Pourbaix diagrams for metallic species in seawater. 

This study aims to analyze the effect of seawater with four different salinity levels on the stability of 
several copper-solid species. The proposed methodology was used for the construction of the Pourbaix 
diagrams for the Covelline (CuS), Chalcocite (Cu2S), Tenorite (CuO), Cuprite (Cu2O), Chalcopyrite 
(CuFeS2), and Bornite (Cu5FeS4) copper-solid species. Once these diagrams were constructed, the 
formation of passivation and corrosion areas were analyzed, and their effects in the leaching operation 
discussed. 

2. Materials and methods 

The Pourbaix diagrams were developed using HSC Enthalpy–entropy and heat capacity software and 
database (HSC chemistry model, v.9). This software utilizes the Stability Calculations for Aqueous 
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Systems (STABCAL) module (Haung, 1989; Haung and Cuentas, 1989). Four different kinds of waters 
were simulated, which were increasing their salinity level (‰), to analyze the effect of these aqueous 
solutions on the stability of several copper-solid species. Starting from 0‰ for pure water, 35‰ for 
seawater, 50‰ for brackish water and ending with 70‰ for brine. For this, we use the reference 
composition of seawater (Millero et al., 2008), see Table 1. It is important to note that although the 
salinity depends on the geographical location, the relative proportion of major ions, such as Na/CI, 
K/Cl, Mg/Cl, and Br/CI ratios, remain constant (Millero, 1974; Wright and Colling, 1995). For this 
reason, the chosen composition of seawater is suitable for the study on the effect of the salinity level on 
copper speciation. 

The simulated brackish water can be approached operationally as a process water obtained by 
recirculation, where the salts are concentrated and seawater is used as ‘make-up’ water. On the other 
hand, the brine (or hypersaline water) is produced as a discharge from the desalination process by 
reverse osmosis, where the production of a water without salts implies the generation of another stream 
with a double concentrated solution (Loizides, 2000). The use of this type of solution has been 
experimentally observed recently for the hydrometallurgical processing of caliche and copper sulfide 
and concentrate ores, opening an opportunity to avoid its discharge into the ocean (Ordóñez et al., 2015; 
Velásquez-Yévenes and Quezada-Reyes, 2018). The composition of brackish water and brine, as well as 
the ionic strengths, were calculated, the latter by using Equation (1). 

𝐼 = #
$
𝑚∑𝑋(𝑍($                                                                           (1) 

Where 𝑚 is the molal concentration (mol of solute/kg of solvent), which can be calculated by Equation 
(2). 

𝑚 =	 #
+

,-
#.,-

                                                                              (2) 

Table 1. Reference Composition of seawater (modified from Millero et al., 2008) 

Solute 𝑖 Mole fraction, 107𝑋( 
Atomic weight by 

molar fraction, 
𝑋(𝐴(	(g/mol) 

Mass fraction, 
𝑤( (g/kg) 

Concentration, 
𝑥( (mol/kg) 

Charge of 
solute 𝑖, 𝑍( 

Na+ 4188071 9.6282786 10.78145 0.46897 +1 
Mg2+ 471678 1.1464134 1.28372 0.05282 +2 
Ca2+ 91823 0.3680082 0.41208 0.01028 +2 
K+ 91159 0.3564162 0.39910 0.01021 +1 

Sr+2 810 0.0070972 0.00795 0.00009 +2 
Cl- 4874839 17.2827667 19.35271 0.54587 -1 

SO42- 252152 2.4222377 2.71235 0.02824 -2 
HCO3- 15340 0.0935998 0.10481 0.00172 -1 

Br- 7520 0.0600878 0.06728 0.00084 -1 
CO32- 2134 0.0128059 0.01434 0.00024 -2 

B(OH)4- 900 0.0070956 0.00795 0.00010 -1 
F- 610 0.0011589 0.00130 0.00007 -1 

OH- 71 0.0001208 0.00014 0.00001 -1 
B(OH)3 2807 0.0173565 0.01944 0.00031 0 

CO2 86 0.0003785 0.00042 0.00001 0 
Sum 10000000 31.4038218 35.16504 1.11977 - 

where 𝐴 = ∑𝑋(	𝐴( is the mole-weighted average atomic weight of the element in sea salt 
31.4038218 g/mol, 𝑆4	is the reference composition salinity, and 𝑆 is the practical salinity. For pure water, 
𝑆4	 is defined to be zero, while for seawater, it is defined to be exactly 35.16504 g/kg (Millero et al., 2008). 
𝑆4	in terms of S can be evaluated by Equation (3).  
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𝑆4 =
56.#869:

56
𝑆                                                                            (3) 

Combining the preceding equations and using the data of Table 1, Equation (4) is obtained, which 
determines the ionic strength of saline water only knowing its practical salinity (𝑆). 

𝐼 = #;.;$9656$	,
#.#.99:<#6:$;	,

                                                                        (4) 

Once these calculations were made, it was determined the most influential variables to focus on these 
variables for the generation of the Pourbaix diagrams. A variable was defined as influential if it can 
significantly modify the distribution of the stability areas in the diagrams. The selected variables were: 
• Ions: cations (Ca2+, K+, Mg2+, Na+, Sr2+) and anions (F-, Br-, CO32-/HCO3-, Cl-) were analyzed. Due to 

the software only accepts inputs of up to eight elements at the same time, being Cu the main. Firstly, 
each ion was analyzed separately along with copper, sulfur, and iron in the case of secondary and 
primary sulfides and then combined for each copper species and salinity concentrations. Only the 
anions CO32-/HCO3-, Cl- and Br- affect the stability of the copper-solid species. Also, the 
concentration of CO2 was analyzed for the salinity levels, but the stability diagrams do not change. 
The incidence of Boron was evaluated individually and together with the other ions for the three 
salinity levels, in all cases, no changes were observed in the stability diagrams. It is well known that 
CO32-/HCO3- and B(OH)4-/B(OH)3 ions are responsible for the alkaline pH of seawater, as well as its 
buffering capacity (Kochkodan et al., 2015). However, the latter does not generate copper complexes 
that can be seen in the diagrams. It is not possible to study H2CO3/CO32-/HCO3- or B(OH)4-/B(OH)3 
species separately because they are in equilibrium. The most important parameter, which determines 
a ratio of boric acid molecules to borate ions and carbonic acid, carbonate ion to bicarbonate ion in 
water, is the pH of the medium. The monovalent borate anion B(OH)4- and CO32- dominates at higher 
pH while non-ionized boric acid B(OH)3 and H2CO3 at lower pH, HCO3- ion dominates at pH 
between 6 to 9. The distribution of boric acid and borate in seawater change moderately with salinity 
(Zeebe and Wolf-Gladrow, 2011). 

• Copper concentration: Two copper concentrations were analyzed, 10-6 m and 1 m. The Pourbaix 
diagrams were constructed for all six copper-solid species with both concentrations. The results were 
opposite, finding small corrosion areas for the higher concentration and more prominent and clear 
areas for the lowest concentration. The copper concentration is a critical variable; thus, it was decided 
to use an intermedia concentration. An average copper concentration for the pregnant leach solution 
(PLS) of 0.07 m is used, this concentration is only referential, being able to use another one different 
in the range of 1-6 – 1 m. 

• Temperature: Three temperatures were analyzed, 298 K, 323 K, and 353 K. The Pourbaix diagrams 
were constructed, and it was found a decrease in the corrosion areas when the temperature was 
increased for all copper-solid species. 
Finally, the Pourbaix diagrams were constructed for six solid species (CuS, Cu2S, CuO, Cu2O, CuFeS2, 

and Cu5FeS4). The seawaters considered the ions (H2CO3/CO32-/HCO3-, Cl- and Br-), with the salinity 
levels (0, 35, 50, and 70‰) and their respective ionic strengths for pure water, seawater, brackish water, 
and brine, respectively. The copper concentration used was 0.07 mol/kg, and the temperature condition 
was 298 K. Once constructed the diagrams, the stability, corrosion, and passivation zones were 
subsequently analyzed. All the graphs are provided in appendix A, supplementary data. 

3. Results and discussion 

The Pourbaix diagrams were constructed using the reference composition of seawater, brackish water, 
and brine shown in Table 2. 

Initially, the diagrams were produced for pure water and all oxides and sulfide copper species. The 
temperature considered is 298 K. As an example, in Fig. 1. shows the Pourbaix diagrams for CuO and 
Cu2S. For all the solid species, the diagrams show the copper corrosion area for pH below 4 and potential 
up to 250 mV. Therefore, to ensure the transfer of Cu2+ ions into the leaching solution, the potential was 
increased, and pH decreased significantly. 

Once the salinity is increased, complexation changes the corrosion areas for all the solid species. 
When the salinity is increased to 35‰, solid complexes appear, producing an increase in the total copper 
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Table 2. Reference Composition of seawater, brackish water and brine, and their respective ionic strengths 

 Seawater Brackish water Brine 
𝑆 (‰) 35 50 70 
𝑆4 (‰) 35.16504 50.23577 70.33008 

𝐼 (mol/kg) 0.72263 1.04871 1.49993 

Solute concentration, 𝑚( (mol/kg)    
Na+ 0.48606 0.70539 1.00889 
Mg2+ 0.05474 0.07944 0.11363 
Ca2+ 0.01066 0.01547 0.02212 
K+ 0.01058 0.01535 0.02196 

Sr2+ 0.00009 0.00014 0.00020 
Cl- 0.56576 0.82106 1.17433 

SO42- 0.02926 0.04247 0.06074 
HCO3- 0.00178 0.00258 0.00370 

Br- 0.00087 0.00127 0.00181 
CO32- 0.00025 0.00036 0.00051 

B(OH)4- 0.00010 0.00015 0.00022 
F- 0.00007 0.00010 0.00015 

OH- 0.00001 0.00001 0.00002 
B(OH)3 0.00033 0.00047 0.00068 

CO2 0.00001 0.00001 0.00002 
 

a)  

𝐶𝑢 + 2𝐻B → 𝐶𝑢$B +𝐻$ 

𝐶𝑢$B +𝐻$𝑂 → 𝐶𝑢𝑂 + 2𝐻B 

2𝐶𝑢 +𝐻$𝑂 → 𝐶𝑢$𝑂+ 𝐻$ 

b)  

𝐶𝑢 + 2𝐻B → 𝐶𝑢$B +𝐻$ 

𝐶𝑢$B + 2𝐻$𝑂 → 𝐶𝑢(𝑂𝐻)$ + 2𝐻B 

2𝐶𝑢 +𝐻$𝑂 → 𝐶𝑢$𝑂+ 𝐻$ 

𝐶𝑢$𝑆 + 0.5𝑂$ + 2𝐻B → 𝐶𝑢$B + 𝑆9 + 𝐻$𝑂 

Fig. 1. Pourbaix Diagrams for pure water 0 ‰ at 298 K and 0.07 m of Cu. a) Solid species CuO, b) Solid species 
Cu2S 
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dissolution. The CuCl2·3Cu(OH)2 and CuCl are formed, decreasing the corrosion area for all the solid 
species in the water stability zone (Fig. 2). The pH in the corrosion area remains below 4, but the 
potential increases close to 500 mV. The CuCl2·3Cu(OH)2 formation consumes hydroxyl ions, which 
produces a decrease in the pH of the solution, desirable in the leaching stage. When the salinity increases 
to 50‰, CuCl32- is formed instead of CuCl, increasing the corrosion area to potentials less than 250 mV 
and pH 6, except for the Cu5FeS4 and CuFeS2. The latter species have reduced CuCl32- area due to the 
formation of the solid species Cu2O·Fe2O3, as a result of iron contribution to the system. On the other 
hand, Cu2(OH)2CO3 solid complex appears as a result of the increased concentration ion CO32- and 
HCO3- ions (Fig. 3). The Cu2(OH)2CO3 formation consumes CO32- and HCO3- ions, which produces an 
even greater decrease in the pH of the solution. 
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2𝐶𝑢 +𝐻$𝑂 → 𝐶𝑢$𝑂+ 𝐻$ 

𝐶𝑢 + 𝐶𝑙. +𝐻B → 𝐶𝑢𝐶𝑙 + 0.5𝐻$ 

𝐶𝑢$B + 2𝐶𝑙. → 𝐶𝑢𝐶𝑙$ 

𝐹𝑒$B + 0.25𝑂$ + 0.5𝐻$𝑂 → 𝐹𝑒5B + 𝑂𝐻. 

2𝐹𝑒5B + 3𝐻$𝑂 → 𝐹𝑒$𝑂5 + 6𝐻B 

b)  

𝐶𝑢6𝐹𝑒𝑆: + 4𝐻B + 9𝑂$
→ 5𝐶𝑢$B + 𝐹𝑒$B + 4𝑆𝑂:$. + 2𝐻$𝑂 

𝐶𝑢$B + 2𝐻$𝑂 → 𝐶𝑢(𝑂𝐻)$ + 2𝐻B 

2𝐶𝑢 +𝐻$𝑂 → 𝐶𝑢$𝑂+ 𝐻$ 

𝐶𝑢 + 𝐶𝑙. +𝐻B → 𝐶𝑢𝐶𝑙 + 0.5𝐻$ 

𝐶𝑢$B + 2𝐶𝑙. → 𝐶𝑢𝐶𝑙$ 

𝐹𝑒$B + 0.25𝑂$ + 0.5𝐻$𝑂 → 𝐹𝑒5B + 𝑂𝐻. 

2𝐹𝑒5B + 3𝐻$𝑂 → 𝐹𝑒$𝑂5 + 6𝐻B 

4𝐶𝑢6𝐹𝑒𝑆: → 2𝐶𝑢$𝑆 + 4𝐹𝑒𝑆 + 𝑆$ 

Fig. 2. Pourbaix Diagrams for seawater 35 ‰ at 298 K and 0.07 m of Cu, ions effect (Br-, CO32-, Cl-). a) Solid 
species CuFeS2, b) Solid Species Cu5FeS4 

The vertical line between Cu2+ and CuCl2·3Cu(OH)2 in Fig. 3 indicates that the reaction is 
independent of Eh, i.e., electrons do not take part in that reaction. On the other hand, the horizontal 
lines between Cu2+ and CuCl32- show that neither H+ nor OH- participate in these reactions but electrons 
take part. 

In the last case, the increase of the salinity is to 70‰, a new area is found, the formation of the CuCl+ 
complex, this corresponds to an oxidative corrosion area, which is overlap to the Cu2+ corrosion area. 
The increasing of the chlorine concentration contributes to the formation of CuCl+ and increased CuCl32- 

area, increasing the corrosion area to potentials close to 0 mV and pH ranges higher than 6 in the water 
stability zone (Fig. 4). However, the formation of CuCl+ may not be beneficial for the downstream stages 
due to the highly corrosive nature of this compound.  

According to the representation obtained in Fig. 4, the use of seawater in hydrometallurgical 
processes of copper may result in the generation of copper compounds and chlorinated complexes, such 
as  CuCl2·3Cu(OH)2,  CuCl,  Cu2(OH)2CO3,  CuCl32-  and  CuCl+.  This observation was confirmed in the 
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𝐶𝑢$B + 2𝐻$𝑂 → 𝐶𝑢(𝑂𝐻)$ + 2𝐻B 

𝐶𝑢$B + 2𝐶𝑙. → 𝐶𝑢𝐶𝑙$ 

𝐶𝑢B + 3𝐶𝑙. → 𝐶𝑢𝐶𝑙5$. 

b)  

𝐶𝑢6𝐹𝑒𝑆: + 4𝐻B + 9𝑂$
→ 5𝐶𝑢$B + 𝐹𝑒$B + 4𝑆𝑂:$. + 2𝐻$𝑂 

2𝐶𝑢$B + 𝐶𝑂5$. + 2𝑂𝐻. → 𝐶𝑢$(𝑂𝐻)$𝐶𝑂5 

𝐶𝑢$B + 2𝐻$𝑂 → 𝐶𝑢(𝑂𝐻)$ + 2𝐻B 

2𝐶𝑢 +𝐻$𝑂 → 𝐶𝑢$𝑂+ 𝐻$ 

𝐶𝑢$B + 2𝐶𝑙. → 𝐶𝑢𝐶𝑙$ 

𝐶𝑢B + 3𝐶𝑙. → 𝐶𝑢𝐶𝑙5$. 

𝐹𝑒$B + 0.25𝑂$ + 0.5𝐻$𝑂 → 𝐹𝑒5B + 𝑂𝐻. 

2𝐹𝑒5B + 3𝐻$𝑂 → 𝐹𝑒$𝑂5 + 6𝐻B 

4𝐶𝑢6𝐹𝑒𝑆: → 2𝐶𝑢$𝑆 + 4𝐹𝑒𝑆 + 𝑆$ 

Fig. 3. Pourbaix diagrams for brackish water 50 ‰ at 298 K and 0.07 m of Cu, ions effect (Br-, CO32-, Cl-). a) Solid 
species Cu2O, b) Solid species Cu5FeS4 

experiments developed by Hernández et al. (2015). They demonstrated that copper dissolution from 
chalcopyrite (CuFeS2) using seawater is higher than using freshwater, through an increase in recoveries 
from 16 to 28%. Similarly, Torres et al. (2015) leached a low-grade fine-sized sulfide mineral (Cu2S-
CuFeS2) using seawater, reaching extractions of 70-80%, which increase up to 90-97% when adding NaCl 
and Cu(II) as a catalyst. The result of these experiments can be attributed to the formation of complexes 
such as CuCl+, which promotes the chemical reaction of dissolution. The horizontal lines between CuCl+ 
and CuCl32- in Fig. 4 show that neither H+ nor OH- participate in these reactions but electrons take part. 
However, electrons and H+/OH- participate in the reaction between Cu2+ and CuCl+. 

If Pourbaix diagrams for the Cu2O, CuO, Cu2S, CuS in brine are compared with the pure water 
diagrams, it can be noted a significant increase in the total corrosion areas reaching pH values above 6 
and potentials close to 0 mV due to the formation of the CuCl32- complex. The CuCl32- is well known in 
the leaching of sulfide ore, which leading the formation of a porous sulfide layer, increasing the copper 
diffusion through the ore. On the other hand, for the Cu5FeS4 and CuFeS2, their corrosion areas reach 
pH close to 5 and potentials above 0 mV. In this case, the corrosion decreased due to the formation of 
the stable solid Cu2O·Fe2O3.  This result can be significant in the flotation of chalcopyrite ore. The Eh-
pH diagrams show that the copper and copper-iron sulfides turn to copper oxides and iron oxides, 
which likely form fast on the surface of the sulfides. Once the oxides are on the sulfide surfaces, these 
surfaces become more hydrophilic, more flotation collector is required to render them hydrophobic, 
and the mineral floatability lowers (Cruz et al., 2020). Copper oxides are more soluble than copper 
sulfides, so there will be more copper ions, which would cause un-wanted activation of pyrite and make 
more difficult the selective flotation of copper sulfides against pyrite as was observed by Mu and Peng 
(2019). 
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Fig. 4. Pourbaix Diagrams for brine 70‰ at 298 K and 0.07 m of Cu, ions effect (Br-, CO32-, Cl-). a) Solid species 
CuS, b) Solid species CuFeS2 

The presence of different ions can visibly change the corrosion area. In the case of Cl- and CO32-, 
several species appear, CuCl2·3Cu(OH)2 and CuCl for a salinity of 35‰, Cu2(OH)2CO3 and CuCl32- for 
a salinity of 50‰, and CuCl+ for a salinity of 70‰. The ion Br- does not appear in any of the diagrams, 
but Br is present as CuBr. This occurs because the corrosion CuCl3-2 area is overlap on the CuBr area, 
due to the concentration of Cl- is about 650 times greater than of Br-. The concentration is not the unique 
variable that can change the corrosion area, but also temperature and pH. When the temperature 
increases, the activity of Cu(II) also increases, resulting in a diminution of the redox potential, and 
therefore, a decrease of its corrosion area. For this system, the potential also decreases with the increase 
of pH. 

Finally, it is worth mentioning that the use of seawater in copper mining is nothing new; in northern 
Chile, several mining operations use it in their hydrometallurgical processes, as well as in their 
concentration processes via mineral flotation. The seawater has both favorable and harmful elements 
for metallurgical processes. Thus, it is relevant to define which interfering elements can be removed 
selectively, being possible to determine the suitable water quality for a specific metal that improves the 
performance of these processes. The choice of the best alternative, either seawater is used raw, partially 
desalinated, or desalinated, can be determined through the information obtained by Pourbaix diagrams. 
Moreover, partial or selective desalination is presented as a more viable alternative than total 
desalination, mainly due to the high energy cost of the latter. This will allow decreasing costs, greater 
efficiency in the process, and a lower impact on the environment (Herrera-León et al., 2019). 
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4. Conclusions 

The Pourbaix diagram is a useful tool for the prediction of the thermodynamic stability area. The 
influence of the pH and potential on the formation of solid stable species and the passivation and 
corrosion areas can be analyzed. 

The results obtained from Pourbaix diagrams for copper ores predict the formation of different 
species such as CuCl2·3Cu(OH)2, CuCl, Cu2(OH)2CO3, CuCl32- and CuCl+, as the salinity of seawater 
increases. The generation of these species produces more extensive corrosion areas, which allows 
flexibility in the leaching operational variables, decreasing acid consumption and less oxidizing 
reagents. The increase in the corrosion areas starts from areas delimited for pH less than 4 and potentials 
above 250 mV for pure water to areas delimited for pH values above 6 and potentials close to 0 mV. The 
positive effect of this increase of corrosion areas is also observed in experiments performed by other 
authors, where the copper recoveries from sulfide ores are enhanced by using chlorinated solutions 
based on seawater. 

Finally, the use of seawater, brackish water, and brine in mining processes is a more sustainable 
alternative instead of use freshwater, especially in locations with complex water availability, like 
northern Chile. 
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 Appendix A. Eh-pH Diagrams 

              
                                                 (a)                                                                                                       (b)  
 

               
                                                (c)                                                                                                        (d)  

Fig. S1. Pourbaix Diagrams for Cu2O at 25 ºC and 0.07 m of Cu, ions effect (Br-, CO3-2, Cl-)                                            
(a) Pure water (0 ‰); (b) Seawater (35 ‰); (c) Brackish water (50 ‰); (d) Brine (70 ‰) 
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                                                (a)                                                                                                       (b)  
  

              
                                                 (c)                                                                                                       (d)  

Fig. S2. Pourbaix Diagrams for CuO at 25 ºC and 0.07 m of Cu, ions effect (Br-, CO3-2, Cl-)                                                  
(a) Pure water (0 ‰); (b) Seawater (35 ‰); (c) Brackish water (50 ‰); (d) Brine (70 ‰) 

                  
                                                (a)                                                                                                        (b)  
 

              
                                                (c)                                                                                                        (d)  

Fig. S3. Pourbaix Diagrams for Cu2S at 25 ºC and 0.07 m of Cu, ions effect (Br-, CO3-2, Cl-)                                                  
(a) Pure water (0 ‰); (b) Seawater (35 ‰); (c) Brackish water (50 ‰); (d) Brine (70 ‰) 
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                                                (a)                                                                                                        (b)  
  

                
                                                (c)                                                                                                        (d)  

Fig. S4. Pourbaix Diagrams for CuS at 25 ºC and 0.07 m of Cu, ions effect (Br-, CO3-2, Cl-)                                                   
(a) Pure water (0 ‰); (b) Seawater (35 ‰); (c) Brackish water (50 ‰); (d) Brine (70 ‰) 

                
                                                 (a)                                                                                                       (b) 
  

              
                                                 (c)                                                                                                       (d) 

Fig. S5. Pourbaix Diagrams for Cu5FeS4 at 25 ºC and 0.07 m of Cu, ions effect (Br-, CO3-2, Cl-)                                             
(a) Pure water (0 ‰); (b) Seawater (35 ‰); (c) Brackish water (50 ‰); (d) Brine (70 ‰) 
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                                                 (a)                                                                                                       (b) 
 

                  
                                                (c)                                                                                                        (d) 

Fig. S6. Pourbaix Diagrams for CuFeS2 at 25 ºC and 0.07 m of Cu, ions effect (Br-, CO3-2, Cl-)                                              
(a) Pure water (0 ‰); (b) Seawater (35 ‰); (c) Brackish water (50 ‰); (d) Brine (70 ‰) 
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