Influences of magnesium ions in water on gelatinization characteristics of starch and its flocculation behaviors on particles
,
 
,
 
 
 
More details
Hide details
1
Kunming University of Science and Technology
 
 
Publication date: 2024-01-02
 
 
Corresponding author
Min Tang   

Kunming University of Science and Technology
 
 
Physicochem. Probl. Miner. Process. 2024;60(1):178149
 
KEYWORDS
TOPICS
ABSTRACT
It is inevitable for the occurrence or built-ups of disturbing cations, especially Ca2+ or Mg2+ ions, in process water during the flotation of iron oxides by using starch as flocculants. In addition to alkali concentrations and temperature, water quality could have an essential role in changing the physicochemical properties of the starch solution and consequently disturbing its flocculation performance on particles. This study aims to identify the effects of magnesium ions on the gelatinization characteristics of starch and its flocculation properties on particles through a series of tests, such as flotation tests, settling tests, size analyses, zeta potentials, powder contact angle, Fourier Transform Infra-Red (FTIR) and X-ray Photoelectron Spectroscopy (XPS) measurement. All results show that magnesium ions at ≤ 4 mmol/L have a positive role due to enlarging the sizes of the particle flocs and accelerating their settling rates. The occurrence of Mg2+ ions at higher concentrations during starch gelatinization only obtains a starch sol-gel with entangled configurations and preoccupied active sites, resulting in the slower settling rate of the particle flocs and less hydrophilicity on mineral surfaces. It could be attributed to the cross-link interactions of magnesium-based precipitates with the acidic groups, especially carboxyl groups on the starch remnants. The suitable acid/base interactions between Mg(OH)2/MgCO3 compounds with these groups in the starch suspension could be beneficial for enhancing the flocculation of hematite as they could build bridges among the pieces and enlarge their sizes as a “load carrier” for aggregation with minerals. However, too much cross-linking could re-entangle the remnants, block their adsorption sites on mineral surfaces, and eventually, weaken the flocculation capacity of starch.
eISSN:2084-4735
ISSN:1643-1049
Journals System - logo
Scroll to top