Swelling clay minerals, which are innately capable of dispersing into thin flakes in water, can significantly depress coal flotation. Some researchers partially attribute depression to pulp viscosity increments. This study sought to understand the role of swelling clay minerals in fine coal flotation, by investigating the rheological behavior of bentonite suspensions under controlled and uncontrolled dispersion conditions. The effect of collector, frother, and solution pH on rheological properties of the pulp was studied. Findings showed that at a natural pH, Newtonian flow properties were displayed when bentonite was directly added into a swelling suppressed solution containing calcium ions. The same process was repeated under uncontrolled conditions, and the suspensions transferred from Newtonian to non-Newtonian flows with pseudo-plastic characteristics, depending on the solid density. Further, pH value, methyl isobutyl carbinol (MIBC) and kerosene had the potential to alter the rheological behavior of controlled and uncontrolled systems, especially pH value in the uncontrolled system.
REFERENCES(23)
1.
ARNOLD, B.J., APLAN, F.F., 1986, The effect of clay slimes on coal flotation, part I: The nature of the clay. International Journal of Mineral Processing, 17, 225-242.
CRUZ, N., PENG, Y., WIGHTMAN, E., XU, N., 2015, The interaction of clay minerals with gypsum and its effects on copper–gold flotation. Minerals Engineering, 77, 121-130.
HANG, P.T., BRINDLEY, G.W., 1970, Methylene blue absorption by clay minerals. Detemination of surface areas and cation exchange capacities (clay–organic studies XVIII). Clays and Clay Minerals, 18, 203-212.
LIM, J., DE KRETSER, R.G., SCALES, P.J., 2009, Investigating the influence of total electrolyte concentration and sodium–calcium ion competition on controlled dispersion of swelling clays. International Journal of Mineral Processing, 93, 95-102.
NDLOVU, B., FARROKHPAY, S., BRADSHAW, D., 2013, The effect of phyllosilicate minerals on mineral processing industry. International Journal of Mineral Processing, 125, 149-156.
PASHLEY, R.M., QUIRK, J.P., 1984, The effect of cation valency on DLVO and hydration forces between macroscopic sheets of muscovite mica in relation to clay swelling. Colloids and Surfaces, 9, 1-17.
DE KRETSER, R., SCALES, P.J., BOGER, D.V., 1997, Improving clay-based tailings disposal: case study on coal tailings. Environmental and Energy Engineering, 43, 1894-1903.
XU, Z., LIU, J., CHOUNG, J.W., ZHOU, Z., 2003, Electrokinetic study of clay interactions with coal in flotation. International Journal of Mineral Processing, 68, 183-196.
ZHANG, Z., LIU, J., XU, Z., MA, L., 2013, Effects of clay and calcium ions on coal flotation. International Journal of Mining Science and Technology, 23, 689-692.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.