Exploring the impact of thiol collectors system on copper sulfide flotation through machine learning-driven modeling
 
More details
Hide details
1
Norwegian University of Science and Technology
 
 
Publication date: 2024-07-28
 
 
Corresponding author
Mustafa Guner   

Norwegian University of Science and Technology
 
 
Physicochem. Probl. Miner. Process. 2024;60(4):191709
 
KEYWORDS
TOPICS
ABSTRACT
Collector selection is a critical step in flotation, as it has a direct impact on product quality, flotation recovery, and selectivity. Collectors can consist of different components, and their effectiveness can vary depending on the type of ore being processed. The general practice in both literature and in industry is to use a mixture of collectors rather than a single collector. However, the use of a collector mixture introduces several complex issues. It is challenging to determine the specific effects of each collector on different minerals, as well as to understand the synergistic effects of mixed collectors in flotation. This study presents a novel investigation focusing on the impact of blends of NAX, AEROPHINE® 3422, and AERO® MX 5149, in varying dosages and combinations, on the flotation performance of Kupferschiefer copper ore. Kinetics flotation tests were conducted using a mechanical flotation cell with various combinations and dosages of listed collectors. For this investigation, different predictive models such as machine-learning (ML) and conventional regression analyses were developed. For model construction, a database including the results of comprehensive experimental results was constructed. The best performing model was selected considering statistical performance indicators and their performance on unseen data. A sensitivity analysis was conducted on the model to justify contributions of collectors on the copper recovery and grade. The results showed that the ML-based models provide compatible results with the expert opinions and have higher statistical performance than conventional modelling tools. According to the experimental results and models’ findings, it has shown that AEROPHINE® 3422 (a blend of isopropyl ethyl thionocarbamate and dithiophosphinate) was the most influential collector for the copper recovery. In addition, two ternary graphs were generated from the modeled data to formulate mixtures for different grades and recovery priorities.
eISSN:2084-4735
ISSN:1643-1049
Journals System - logo
Scroll to top