Efficient solidification of Pb2+ by activated tungsten tailings and cement
,
 
,
 
,
 
,
 
,
 
 
 
More details
Hide details
1
Jiangxi University of Science and Technology
 
2
Jiangxi Key Laboratory of Mining Engineering
 
 
Publication date: 2023-03-26
 
 
Corresponding author
Jingzhong Kuang   

Jiangxi University of Science and Technology
 
 
Physicochem. Probl. Miner. Process. 2023;59(2)
 
KEYWORDS
TOPICS
ABSTRACT
The preparation of cementing admixture from tailings and co-solidification of Pb2+ with cement is a green way to realize the resource utilization of tailings and treatment of the lead-containing wastewater. In this paper, the tungsten tailings were activated in different ways, and the mechanical properties of the tungsten tailings-cement solidified body with different activation systems and the solidification behavior of Pb2+ were studied. The phase and microstructure of the hydrated product were characterized by XRD, FT-IR, SEM and EDS. The results showed that the curing effect of Pb2+ was obviously different of different activation systems, and the curing effect of the solidified body of the ternary composite activation system (TCAS) was the best, second only to the pure cement system (PCS). Different activation methods have a significant impact on the mechanical properties of the solidified body. With the increase of the Pb2+ content, the compressive strength of the solidified body gradually decreased, the Pb2+ leaching concentration gradually increased; with the extension of the curing age, the compressive strength gradually increased, and the Pb2+ leaching concentration gradually decreased. In particular, the compressive strength of the 28d solidified body was 31.43 MPa and the leaching concentration of Pb2+ was only 0.38 mg/L when the Pb2+ content was 5%. The phase, microstructure and EDS results of the hydration products showed that Pb2+ was mainly solidified in the C-S-H gel.
eISSN:2084-4735
ISSN:1643-1049
Journals System - logo
Scroll to top