Activation of quartz flotation by Cu2+, Ni2+ in the sodium ethylxanthogenate (EX) system
,
 
,
 
,
 
,
 
,
 
 
 
More details
Hide details
1
Kunming University of Science and Technology
 
 
Publication date: 2023-05-21
 
 
Corresponding author
Xiong Tong   

Kunming University of Science and Technology
 
 
Physicochem. Probl. Miner. Process. 2023;59(2):166368
 
KEYWORDS
TOPICS
ABSTRACT
During the flotation of metal sulfide minerals, due to the interference of unavoidable ions, the quartz also partially floats in some cases. The studies on the mechanism of quartz being activated and floating up are still insufficient. In this study, the influence of the Cu2+ and Ni2+ unavoidable ions on the floatation of quartz was studied by micro-flotation experiments, adsorption detection, zeta potential measurement, solution composition calculation, infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) analyses, and atomic force microscopy (AFM) observation. This provides a theoretical reference for further understanding the mechanism of sodium ethylxanthogenate and quartz surface, as well as the development of a new quartz depressant. The results of flotation showed that after activation by Cu2+ (1×10-4 mol/dm3) and Ni2+ (5×10-5 mol/dm3), the quartz was captured by sodium ethylxanthogenate (EX: 1.4×10-4 mol/dm3) under alkaline conditions (pH=10), while the best recoveries were obtained as 80% and 43%, respectively. The results of adsorption and zeta potential measurements showed that the precipitation rate of Cu2+ was greater than that of Ni2+ under alkaline conditions. Additionally, both Cu2+ and Ni2+ electrostatically adsorbed on the quartz surface and changed the zeta potential of quartz. The solution composition calculation further showed that Cu(OH)+, Cu(OH)2(s), and Ni(OH)+, Ni(OH)2(s) were the main components in the solution under alkaline conditions. The FT-IR and XPS analyses and AFM observations demonstrated that Cu and Ni species adsorbed on O atoms on the quartz surface, providing active sites for EX adsorption, and EX combines with Cu and Ni species on the quartz surface to generate -O-Cu-EX and -O-Ni-EX complexes. Finally, the quartz floated up due to the formation of hydrophobic products and firm adsorption
eISSN:2084-4735
ISSN:1643-1049
Journals System - logo
Scroll to top