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Abstract
Polyploidization is one of themost effective ways to improve plant height and yield
in rice (Oryza sativa L.). However, themolecularmechanismof its regulation is not
yet fully understood.Here, we investigated the agronomic traits of diploid (‘Balilla-
2x’) and tetraploid (‘Balilla-4x’) lines of the japonica rice variety ‘Balilla’. Compared
with ‘Balilla-2x’, ‘Balilla-4x’ exhibited significantly increased plant height, spike
length and yield per plant. RNA-seq analysis showed that the expression levels of
yield-related genes controlling plant height and panicle development (e.g., STH1,
OsYUC9 and OsDEP1) were significantly upregulated in ‘Balilla-4x’ rice plants.
ese results indicated that polyploidization changed the expression of genes
related to agronomic traits such as plant height and spike length, thereby increasing
rice yield. is study provides a further basis for understanding the yield of rice
aer polyploidization and can serve as a new theoretical reference for breeding
high-yielding rice varieties.
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1. Introduction

Rice (Oryza sativa L.) is one of the three major food crops
in the world, providing security for more than 50% of the
world’s population, and is also the crop with the largest water
demand, accounting for about 70% of the total agricultural
water demand (Luo, 2010; Q. F. Zhang et al., 2008). Climate
change, population growth and the reduction of arable land
have had an adverse impact on crop yield and food production
(A. Wang et al., 2013; X. Zhang et al., 2017). erefore, how
to improve rice yield to cope with the challenges of growing
food demand is an important goal of current rice breeding
(Abberton et al., 2016; Kissoudis et al., 2016; Yin et al., 2020).

emain factors that determine the yield of rice include effec-
tive panicle number, grain number per panicle and 1,000-
grain weight. It is particularly important to clarify the molec-
ular mechanisms of yield traits, which are the basis for the
cultivation of high-yield rice varieties (J. Chen et al., 2015;
L. Chen et al., 2023; Huang et al., 2022). Currently, manymain
QTLs/genes have been cloned and verified to be in control
of rice yield traits. For example, OsGA20ox1 is one of the
major cloned QTL controlling rice yield, and inhibition of the
expression ofOsGA20ox1 andOsGA20ox2 reduces the height
of rice plants. Further studies showed that it can induce the
accumulation of cytokinin and gibberellin and activate the
expression of genes related to panicle development to affect
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the number of grains and the yield (Su et al., 2021; Y.Wu et al.,
2016). OsDPE2 is characterized as a cytoplasmic dismutase
gene. Knockout of this gene significantly reduces the number
of panicles and tillers as well as the seed-setting rate (Zheng
et al., 2023). e OsCKX2 (Gn1a) gene encodes an enzyme
that degrades cytokinin. Weakened expression of this gene
increases the accumulation of cytokinin in the inflorescence
meristem, the number of reproductive organs and the number
of grains per panicle, ultimately improving the yield of rice
(Ashikari et al., 2005; Rong et al., 2022).

Plant height is one of the key factors determining plant
architecture, which has an important impact on crop yield
and is an important trait for breeding rice varieties. Some
genes have also been reported to affect plant height, such
as OsDEP1, OsTubA2 and FLR2. OsDEP1 is a major QTL
that controls rice panicle type, regulating plant type traits,
including erect panicles and plant height. Phenotypic anal-
ysis of near-isogenic and transgenic lines revealed that the
functional allele OsDEP1 caused panicle drooping, while the
functional loss mutation OsDEP1 caused panicle erection,
thereby affecting plant height (Zhou et al., 2009). OsTubA2,
one encoding α microtubulin, a gene that regulates cell
elongation independently of the BR signaling pathway, can
cause plant dwarfing and affects plant architecture and yield
(Segami et al., 2012). FLR2, a homologous gene with Ara-
bidopsis FERONIA (FER), affects cell elongation through
the GA synthesis pathway and other phytohormones, thereby
regulating plant height (C. Li et al., 2016).

Polyploidization, an important driving force for species for-
mation and evolution, is highly prevalent in nature (Jiao
et al., 2011; Peer et al., 2017; Soltis, 2005; Wolfe, 2001). As
an important food crop, rice also exhibits the polyploidization
phenomenon (R. Chen et al., 2021; Paterson et al., 2004;Wing
et al., 2018; Yu et al., 2005). Polyploid rice plants not only
have some advantageous agronomic traits, such as greater
height and robustness, longer panicles, larger grains and
increased yield, but also have enhanced stress resistance and
improved seed quality (R. Chen et al., 2021; B.Wu et al., 2018).
However, little is known about the mechanisms underlying
these changes. In this study, we identified a polyploid rice
strain ‘Balilla’ tetraploid (‘Balilla-4x’) synthesized previously
that exhibits advantageous agronomic traits and seed quality
(N. Wang et al., 2022a). e results indicate that changes in
agronomic traits and rice quality may be attributed to altered
expression of crucial yield genes. is study provides a basis
for using polyploid technology to improve the agronomic
traits and nutritional quality of rice and also provides a
new theoretical reference for the breeding of high-yield and
high-quality rice varieties using polyploid technology.

2. Material andmethods

2.1. Plant materials

e artificially synthesized tetraploid (‘Balilla-4x’, 2n = 4x =
48) results from the doubling of the ‘Balilla’ diploid (‘Balilla-
2x’). ‘Balilla-2x’ (O. sativa ssp. japonica, 2n = 2x = 24), a rice
variety from Italy with a low seed-setting rate, was provided
by the Polyploid Genetics Laboratory of Hubei University,
Wuhan, China.

2.2. Growth conditions of plant materials

e rice plants (‘Balilla-2x’ and ‘Balilla-4x’) used in this study
grew in the paddy field of experimental fields in Shanghai
during the natural growing seasons.

2.3. Phenotypic observations of rice

e agronomic traits of ‘Balilla-2x’ and ‘Balilla-4x’ plants,
including plant height, panicle length, tillering number and
1,000-grain weight, were manually measured by Meter ruler
(Deli, China) aer the plants were harvested. One thousand-
grain weight was measured by a precision balance (accu-
racy 0.1 mg, LC-SFA524, Lichen, China), and the weight of
1,000 seeds was calculated using the formula (seed weight)/
(number of seeds) × 1,000. e grain length, width and
thickness of dry seeds were determined with Vernier callipers
(accuracy ± 0.02 mm) purchased from Syntek in China.
e moisture content of seeds was determined using AOAC
official method 930.15. Protein content was determined using
the Kjeldahl2300 Analyzer. e lipid content was measured
using a lipid analyzer (SZF-06A, Nanjing, China). More
than 300 plump and insect-free seeds were selected for
measurement. At least three biological replicates were used
for analyses.

2.4. RNA isolation and qPCR

e leaves of ‘Balilla-2x’ and ‘Balilla-4x’ plants were sampled
for RNA isolation. According to the manufacturer’s instruc-
tions, total RNAwas extracted from rice leaves using TRNzol-
A+ reagent (Tiangen, Beijing, China). e reverse transcrip-
tion of total RNA was achieved using EasyScript One-Step
gDNA Removal and cDNA Synthesis Super Mix (TransGen,
Beijing, China). Quantitative analysis of gene expression was
performed using TransGen’s TransStart® Top Green qPCR
SuperMix kit and Bio-Rad CFX96 Real-Time PCR Detection
System (Bio-Rad, USA). e PCR procedure was as follows:
94 °C 30 sec, 94 °C 5 sec, 55 °C 15 sec, 72 °C 10 sec, 30–
35 cycles. e OsActin gene (No. AY212324) was used as the
internal reference to calculate the relative expression levels of
the target genes (Livak & Schmittgen, 2001).

2.5. RNA-Seq and enrichment analysis of DEGs

‘Balilla-2x’ and ‘Balilla-4x’ plants (three replicates, with at
least 30 plants per line) grew for 3–4 weeks. e leaves of
these plants were sampled for rice transcriptome sequencing.
TRIzol reagent (Life Technologies) was used to extract total
RNA, and the concentration of extracted RNA was mea-
sured. Qualified RNA samples were then used for library
construction according to the Tru®Seq RNA Library Prepa-
ration Kit v2(Illumina), and RNA sequencing was performed
with Illumina Hiseq 2500 at Shanghai Personal Biotech-
nology Co., Ltd. During the sequencing process, SeqPrep
was used to remove splices or merge overlapping paired
reads into a single read (https://github.com/jstjohn/SeqPrep),
and use Sickle to remove low-quality reads (https://github.
com/najoshi/sickle). en, the data were calibrated with the
reference genome of rice (Nipponbare Reference IRGSP-1.0)
using HISAT2 v2.1.0. FPKM (Fragments Per Kilobase Millon
Mapped Reads) to assess gene expression levels. DESeq2
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v1.6.3 is used for differential gene expression analysis between
two samples, with q ≤ 0.05 and | log2... | ≥ 1 gene identified
as a differentially expressed gene. rough hypergeometric
testing, the enrichment in functional terms (GO: terms)
was achieved (http://geneontology.org/). Q < 0.05 indicates
significant enrichment.

3. Results

3.1. Polyploidization improves plant height and yield
of rice

Polyploidization not only increases the genome capacity and
expands the range of genetic variation but also typically
increases yield, making it an important application in crop
breeding (Cai et al., 2007; Comai, 2005; Koide et al., 2020;
Sattler et al., 2016). Previously, we successfully constructed a
‘Balilla’ tetraploid (‘Balilla-4x’) (W. Wang et al., 2022b), and
here we first analyzed the agronomic traits of ‘Balilla-2x and
4x’ (i.e., plant height, panicle length, tillering and 1,000-grain
weight). e results showed that compared to ‘Balilla-2x’, the
plant height of ‘Balilla-4x’ was significantly higher, increasing
by 19.35% (Figure 1A–B, Table 1). ‘Balilla-4x’ had longer pan-
icles and thicker stems, with an increase of about 24.58% in
panicle length, although the differences in tiller numbers were
not significant (Figure 1C–D, Table 1).e grain numbers per
panicle of ‘Balilla-4x’ transgenic plants were also obviously
higher compared with ‘Balilla-2x’ plants, which increased
by 37.60% (Figure 1E, Table 1). e 1,000-grain weight of
‘Balilla-4x’ increased by 33.38% compared to that of ‘Balilla-
2x’ (Figure 1F, Table 1). e yield per plant of ‘Balilla-4x’
plants increased by 25.10% (Figure 1G, Table 1). ese results
indicated that compared to diploid rice, polyploid rice shows
a marked potential to increase yield.

3.2. Polyploidization changes the grain shape and
nutritional quality of rice

In order to determine whether polyploidization affects rice
grain shape, we investigated the grain length, grain width and
grain thickness of ‘Balilla-4x’. e result indicated that the
grain length of ‘Balilla-4x’ plants was higher, increasing by
9.43% compared with that of ‘Balilla-2x’ plants (Figure 2A–B,
Table 2). e grain width of ‘Balilla-4x’ plants increased by
12.90% compared with that of ‘Balilla-2x’ (Figure 2C–E,
Table 2).e grain thickness of ‘Balilla-4x’ plants increased by
15% compared with that of ‘Balilla-2x’ (Figure 2D, Table 2).
ese results indicate that the polyploidization of ‘Balilla’
indeed has an impact on the grain shape of rice.

Some studies have shown that polyploidization of rice can not
only produce beneficial agronomic traits but also improve the
nutritional quality of rice (Dhawan& Lavania, 1996;W.Wang
et al., 2022b; H. Y. Zhang et al., 2016). erefore, we tested
the nutritional composition of ‘Balilla-4x’. e results showed
that compared to ‘Balilla-2x’, ‘Balilla-4x’ plants had increased
grain protein content by 10.10% and significantly increased
lipid content by 32.07% (Figure 2F–G, Table 2). ese results
indicate that the polyploidization of ‘Balilla’ not only affects
the grain shape of rice but also indeed affects the nutritional
quality of rice seed.

3.3. Identification of potential target genes affecting
plant height and yield of rice

To determine whether the molecular mechanism underlying
rice polyploidization affects plant height and yield, gene
expression in ‘Balilla-2x’ and ‘Balilla-4x’ plants was analyzed
using high throughput sequencing (HTS). e differentially
expressed genes (DEGs) between the ‘Balilla-2x’ and ‘Balilla-
4x’ plants were further analyzed.e results showed that there
were 1,644 upregulated genes (fold change ≥ 2.0) and 1,175
downregulated genes (fold change ≤ 0.5) in ‘Balilla-4x’ plants
compared with ‘Balilla-2x’ plants (Table S1, Table 3). e
DEGs that affected rice yield were selected by searching the
previous reports of characterizing the function of theseDEGs.
Approximately 10% of the up-regulated DEGs in ‘Balilla-4x’
plants were related to agronomic traits, including plant height,
panicle length and yield in rice (Figure 3A). e enriched
upregulated genes in ‘Balilla-4x’ plants mainly belong to the
following biological process categories: plasma membrane,
external encapsulating structure, hydrolase activity or acting
on acid anhydrides, lipid metabolic process and cellular
response to stimulus (Figure 3B). KEGG metabolic pathway
enrichment analysis indicated that DEGs in Ballilla-4x plants
do indeed affect these metabolic pathways, such as starch and
sucrose metabolism, amino and nucleotide sugar metabolism
and plant hormone signal transduction (Figure 4).

Furthermore, we selected several genes related to rice agro-
nomic traits among theDEGs and detected the expression lev-
els of several DEGs through qPCR.e results confirmed that
the expression ofmost selectedDEGs (e.g., LOC_Os03g57240,
LOC_Os03g03660, and LOC_Os03g63970) was higher in the
‘Balilla-4x’ line than in the ‘Balilla-2x’ line (Figure 5). ese
results demonstrate that polyploidization can improve rice
plant height, and yield may be partially attributed to the regu-
lation of these DEGs. For example, LOC_Os03g57240 (DST)
plays a vital role in improving rice grain yield.
LOC_Os03g03660 (OsCDPK1) affects plant height and grain
size. LOC_Os03g63970 (OsGA20ox1) affects the number of
grains per spike. Some of the other DEGs also are involved
in regulating rice yield traits. For example, LOC_Os05g32270
(SMOS1) affects organ size. LOC_Os06g10880 (OsbZIP46),
LOC_Os07g04020 (OsEPFL5),LOC_Os07g12590 (OsFBX225),
LOC_Os07g41200 (GL7), LOC_Os07g46790 (OsDPE2) and
LOC_Os11g14220 (OsTubA2) participated in regulating the
morphogenesis of rice panicles and affect rice yield.
LOC_Os09g29130 (OsZHD1), zinc finger transcription factor,
affects internode length, panicle, tiller number and cell size.
LOC_Os10g42110 (OsBSK2), a BR signaling pathway kinase,
affects grain length and width. LOC_Os01g69830 (qHd1)
encodes one gene that affects heading date. LOC_Os02g13900
(OsBZR4) is a member of the BR main signaling pathway,
which has a significant impact on many traits of rice plant
architecture, grain shape and stress resistance.
LOC_Os02g13950 (FUWA) has an impact on rice panicle type,
grain type and grain weight. LOC_Os02g42280 (OsGRF4)
affects rice grain type and weight. ese results demonstrate
that many yield-related genes were differentially expressed
in the ‘Balilla-4x’ compared with the ‘Balilla-2x’ line and
partially explained the increased yield traits in the tetraploid
rice (Table 4).
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Table 1 Phenotypic data for Balilla-2x and Balilla-4x plants.

Trait Balilla-2x Balilla-4x

Plant height (cm) 81.30 ± 1.56 97.03 ± 2.86**
Panicle length (cm) 20.63 ± 1.27 25.70 ± 0.37**
No. of tillers 9.33 ± 0.47 8.62 ± 0.81
Grains per panicle 125.14 ± 2.88 172.00 ± 5.76**
1,000-grain weight (g) 23.94 ± 1.10 31.93 ± 1.30**
Yield per plant (g) 44.27 ± 9.88 55.38 ± 9.54**

Note: Agronomic traits are based on Balilla-2x and Balilla-4x plants under natural growing seasons. Recorded in Shanghai, China, 2022; Agronomic
traits are presented as mean ± standard deviation (n = 10). **P < 0.01 according to Student’s t-test.

Table 2 Grain shape and nutritional quality data.

Indexes Balilla-2x Balilla-4x

Grain length (cm) 0.53 ± 0.10 0.58 ± 0.13*
Grain width (cm) 0.31 ± 0.01 0.35 ± 0.01*
Grain thickness (cm) 0.20 ± 0.03 0.23 ± 0.01**
Protein content (%) 10.20 ± 0.08 11.23 ± 0.06**
Lipid content (%) 1.84 ± 0.02 2.43 ± 0.02**

Note: Agronomic traits and nutritional quality are based on Balilla-2x and Balilla-4x plants under natural growing seasons. Recorded in Shanghai,
China, 2022; e data are presented as mean ± standard deviation (n = 10). *P < 0.05, **P < 0.01 according to Student’s t-test.

Table 3 Partial up-regulated and down-regulated genes from RNA-seq.

No. Locus ID Function Fold change

1 LOC_Os06g38120 Low-affinity cation transporter 2842.15
2 LOC_Os09g36680 S-like Ribonuclease; S-like RNase 1254.61
3 LOC_Os01g57310 Magnaporthe grisea resistance-37 164.07
4 LOC_Os05g39540 ZRT- and IRT-like protein; metal cation transporter 157.47
5 LOC_Os11g44960 NBS-LRR disease resistance protein, putative, expressed 90.94
6 LOC_Os10g40720 β-expansin 42.28
7 LOC_Os01g72370 bHLH protein 35.51
8 LOC_Os05g12040 Obtusifoliol 14α-demethylase 31.17
9 LOC_Os07g04020 EPF/EPFL family gene 9.43
10 LOC_Os03g63970 Gibberellin 20-oxidase gene; Grain Number per Panicle1 5.09
11 LOC_Os09g19400 Carbohydrate-binding malectin-like protein 0.00
12 LOC_Os07g04560 NAC transcription factor 0.02
13 LOC_Os06g06750 SEPALLATA-like MADSbox gene 0.03
14 LOC_Os11g38040 Bright-green leaf 0.06
15 LOC_Os09g36200 Stay green gene; chlorophyll-degrading Mg++-dechelatase 0.09
16 LOC_Os12g04980 Homologous pairing aberration in rice meiosis 0.11
17 LOC_Os07g48630 Rice ETHYLENE INSENSITIVE3-LIKE gene 0.50
18 LOC_Os03g21030 NAC (NAM, ATAF, and CUC2) transcription factor 0.50
19 LOC_Os07g05360 10 kDa Photosystem II polypeptide 0.50
20 LOC_Os10g29470 Cinnamyl alcohol dehydrogenase 3 0.50

Note: e expression levels of differentially expressed genes (DEGs) related to agronomic traits in Balilla-4x were based on Balilla-4x/Balilla-2x.
Red represents up-regulation; Green represents down-regulation.
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Figure 1 Phenotypic characteristics of ‘Balilla-4x’ plants. (A–B) Plant height and phenotypes of ‘Balilla-2x’ and ‘Balilla-4x’ plants;
(C–D) Panicle length; (E) Grains per panicle; (F) 1,000-grain weight; (G) Yield per plant. Data represent means ± SE (n = 10),
**P < 0.01, Student’s t-test.
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Figure 2 Grain shape features of ‘Balilla-2x’ and ‘Balilla-4x’. (A–B) Grain length; (C–E) Grain width; (D) Grain thickness;
(F) Protein content; (G) Lipid content; (H) Grains phenotypes of ‘Balilla-2x’ and ‘Balilla-4x’ plants, Bar = 5 mm. Data represents
means ± SE, n = 10, *P < 0.05, **P < 0.01, Student’s t-test.

4. Discussion

Polyploid individuals are those with three or more sets of
chromosomes in somatic cells. Polyploidization is an impor-
tant way for many plants and animals to evolve (Jiao et al.,
2011; Ni et al., 2009). Many organisms have experienced at
least one polyploidization event in their evolutionary history
(Jiao et al., 2011; Zhao et al., 2021). Polyploidization typically
enables organisms to exhibit strong vitality and adaptability,
as well as to adapt to drought, salinity and other stresses (Liu
et al., 2023).erefore, polyploid technology has been applied
extensively in plant breeding, especially for important crops
such as rice, wheat and soybean (Sun et al., 2020; L. Wang
et al., 2021b;N.Wang et al.,2022a). As polyploidization always
leads to a reduced seed setting rate, many previous reports on
crop polyploidization focused on anther and pollen develop-
ment (Ku et al., 2022; X. Li et al., 2018). Other studies also
indicated that polyploidization affects stomatal morphology,
a photosynthetic character of the leaf (Xiong et al., 2022).
Compared to its diploid counterpart (‘Balilla-2x’), ‘Balilla-4x’

exhibited increased plant height, panicle length, grain number
per panicle and length, width and thickness of rice grains,
which contributed to the enhancement of rice yield (Figure 1,
Figure 2, Table 1). ese findings are similar to those of previ-
ous studies that reported longer grains and increased biomass
yield in autotetraploid rice varieties compared with diploid
varieties (Y. C. Li & Rutger, 2007; Tu et al., 2003). In addition,
studies have shown that polyploidization leads to changes
not only in plant agronomic characters but also in their seed
nutrition (Gan et al., 2021; Sattler et al., 2016). We found that
compared to diploids, both the protein and the lipid content
in tetraploids were increased (Figure 2F–G, Table 2). Our
results further support the conclusion that autotetraploid rice
is considered better with respect to protein content as com-
pared with diploid rice (Tu et al., 2003), and it will be valuable
to cultivate functional rice varieties with a high content of
proteins and lipids through polyploidization.

Currently, research on polyploidization is mostly focused
on the phenotypic and nutritional composition of plants
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Figure 3 Transcriptome analysis of ‘Balilla-2x’ and ‘Balilla-4x’ plants. (A) Classification of upregulated genes in ‘Balilla-4x’ plants;
(B) Functional enrichment of DEGs in ‘Balilla-4x’ vs. ‘Balilla-2x’ plants. e numbers indicate the gene counts for each functional
category.

(W. Wang et al., 2022b; Yuan et al., 2021). However, the
mechanism underlying the improvement of crop yield traits
by polyploidization is still unclear, especially in rice. Previ-
ous studies have conducted several transcriptome and gene
expression analyses on polyploid crops. However, most of

these studies focused on pollen development and abiotic
stress response (Guo et al., 2017; X. Li et al., 2018; N. Wang
et al., 2022a; J. Wu et al., 2020). Few reports have studied
the molecular mechanism of increased yield traits in poly-
ploid rice. Here, we conducted transcriptome sequencing
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Figure 4 KEGG Pathway functional enrichment of DEGs in ‘Balilla-4x’ vs. ‘Balilla-2x’ plants. e x-axis represents the
enrichment factor. e y-axis shows the pathway names. A larger value of the rich factor indicates a higher enrichment value.
e color indicates the P value. Point size indicates DEG number, and larger dots refer to higher numbers of DEGs.

analysis on ‘Balilla-2x’ and ‘Balilla-4x’ to explore related
genes that affect rice agronomic traits. We found that several
yield-related genes were up-regulated in ‘Balilla-4x’, such as
the GA20 oxidase gene OsGA20ox1, EPF/EPFL family gene
OsEPFL5 and zinc finger transcription factor DST, whereas
some genes, such as the lipid acid hydrolase gene STH1,
were downregulated in ‘Balilla-4x’. OsGA20ox1 is one of
the major cloned QTLs controlling rice yield. It encodes a
GA20 oxidase that increases cytokinin activity in the rice
panicle meristem, thereby increasing grain number and yield
(Y. Wu et al., 2016). OsEPFL5 is an EPF/EPFL family gene
that positively regulates rice panicle morphogenesis (Guo
et al., 2023). DST encodes a zinc finger transcription factor,
and its semi-dominant allele DSTreg1 disrupts the regulation
of OsCKX2 expression by DST and increases the content of

cytokinin in SAM during the reproductive period, resulting
in an increase in meristem activity and the number of grains
(S. Li et al., 2013). ese findings suggest that changes
in polyploidized rice agronomic traits may be caused by
regulation of the expression of yield-related genes. STH1
encodes one α/β Hydrolase Folding Domain and can play
the role of transcription coactivator of zinc finger protein
Hd1, regulate the expression level of the florigen gene Hd3a
and negatively affect the head time and yield of rice. e
translation of STH1 in the African rice variant form was
terminated prematurely, and enzyme activity was lost, and
introducing this allele caused a significant increase in the
number of grains per panicle and the number of branches
(Xiang et al., 2022).
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Figure 5 Detection of the relative expression levels of DEGs related to agronomic traits in ‘Balilla-4x’ and ‘Balilla-2x’ plants
through qPCR. Data represent means ± SE (n = 3).

ough few studies on the transcriptome supplied infor-
mation on differentially expressed genes associated with
yield traits, TRAQ-based quantitative glutelin proteomic
analysis was conducted to supply valuable information on
differentially expressed proteins associated with the increased
yield of autotetraploid rice. It was revealed that ribosomal
proteins and the biosynthesis and metabolism of amino acids
were significantly higher in AJNT-4x than in AJNT-2x during
endosperm development (Xian et al., 2021). In this study,
we also found that amino acids were enriched in the DEGs
KEGG analysis. Moreover, our results of GO and KEGG
enrichment indicated that sugar metabolism was enhanced
in the tetraploid rice. Our results, together with previous
reports suggest that the changes in hormone, protein and

sugar synthesis and metabolism synergistically altered the
agronomic and yield traits of autotetraploid rice.

e mechanism emphasizes that the altered expression of
polyploid genes may be related to chromosome structure and
epigenetic modifications (Song &Chen, 2015; H. Zhang et al.,
2019). Several studies have demonstrated that methylation in
many chromosome regions was altered in the autotetraploid
rice and thus led to changes in gene expression (Rao et al.,
2023; L.Wang et al., 2021a; J. Zhang et al., 2015). For example,
it was found that polyploidy induces DNA hypomethyla-
tion and potentiates genomic loci coexistent with many
stress-responsive genes, which contribute to the increased
salt tolerance of tetraploid rice (L. Wang et al., 2021a).
It would be valuable to perform the combination analysis of
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Table 4 Partial DEGs related to plant height and yield.

No. Locus ID Function Fold change

1 LOC_Os01g69830 Minor heading date QTL 2.95
2 LOC_Os02g13900 BRASSINAZOLE-RESISTANT4 6.61
3 LOC_Os02g13950 NHL domain-containing protein 2.06
4 LOC_Os02g42280 Growth-regulating factor; GRAIN SIZE ON CHROMOSOME 2; PANICLE

TRAITS 2; grain length and width 2
2.65

5 LOC_Os03g03660 Calcium-dependent protein kinase 2.16
6 LOC_Os03g07920 Big Grain1 3.13
7 LOC_Os03g57240 Cys-2/His-2-type zinc finger protein; DROUGHT AND SALT TOLERANCE 6.28
8 LOC_Os03g63970 Gibberellin 20-oxidase gene; Grain Number per Panicle1 5.09
9 LOC_Os05g32270 SMALL ORGAN SIZE1; AP2-Type Transcription Factor 2.23
10 LOC_Os06g10880 bZIP transcription factor; ABRE-binding protein responding to ABA and glucose 2.10
11 LOC_Os07g04020 EPIDERMAL PATTERNING FACTOR (EPF) and EPF-LIKE (EPFL) gene;

EPF/EPFL family gene
9.43

12 LOC_Os07g12590 Morphogenesis of rice panicles 2.44
13 LOC_Os07g41200 Grain Length on Chromosome 7; LONGIFOLIA protein; grain width; Slender

grain on chromosome 7
3.09

14 LOC_Os11g14220 Alpha-tubulin; Small and round seed 5; TWISTED DWARF 1 2.08
15 LOC_Os09g29130 Zn-finger transcription factor; abaxially curled and drooping leaf-dominant 2.55
16 LOC_Os10g42110 Brassinosteroid-signaling kinase; grain length and grain weight 10 3.07

Note: Fold Change: Balilla-4x/Balilla-2x.

the transcriptome and the methylome of autotetraploid rice,
which will imply the molecular mechanism of improved yield
traits of polyploidization.

5. Conclusion

Tetraploid rice ‘Balilla-4x’ increased plant height, seed num-
ber per panicle and yield. e expression of many yield
genes (e.g. OsDEP1) was upregulated and that of some genes
(e.g. OsEPFL5) was down-regulated, which resulted in the
enhancement of sugar and amino acid synthesis and led to an
improved yield and quality of rice seeds aer polyploidization.
is high-yield and nutritious tetraploid strain would be
valuable for cultivating novel high-yield and nutrient-rich
varieties in future rice breeding.

6. Supplementary material

e following supplementary material is available for this
article:

Table S1. DEGs that were up-regulated (red) in ‘Balilla-4x’
while down-regulated (green) in ‘Balilla-2x’ are selected for
‘Balilla’ targets.

Table S2. List of primers used in this study.

Data availability

e RNA-seq data supporting the results of this article have
been submitted to the GEO at NCBI with the accession num-
ber GSE254291.
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