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Abstract
Dendrobium is a large group of Orchidaceae, counting more than 1,100 species,
whose classification, both within the genus and individual sections, is not straight-
forward. erefore, the aim of our study was to perform phylogenetic analyses for
representatives of a nominal section of Dendrobium and to test the usefulness of
a low-copy nuclear gene encoding a xanthine dehydrogenase protein for recon-
structing phylogeny. We also wish to compare the utility of two nuclear markers,
Xdh and ITS. To realize this, we analyzed the diversity of the two markers and the
reliability of the resulting trees. Our results indicate that the nuclear ITS region
shows higher variability and clade credibility in trees, in closely related species,
and between sections than the low-copy nuclear gene. Xdh may be more reliable
at higher taxonomic levels, but confirmation of this requires further research.
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1. Introduction

Dendrobium is one of the orchid genera that is abundant in
species occurring in Asia, Australasia, and Australia (Xiang
et al., 2013). In total, it comprises about 1,100 species (Burke
et al., 2008; Moudi et al., 2013; Takamiya et al., 2014).

Although it was described more than 200 years ago (Swartz,
1799), there is still a great desire to investigate it. Identification
ofDendrobium species is very difficult.is is probably due to
the high level of polymorphism, the large number of species,
the wide range of occurrence, and their geographical distri-
bution also contributes to identification problems within this
taxon (Takamiya et al., 2014). Attempts to classify this genus
have been made since the 19th century, first on the basis of
morphological characters and later on phylogenetic analyses.
To date, there has been no consistent classification of Den-
drobium, and no unambiguous taxonomic treatment, either
between species within the genus or within particular sections

(Clements, 2006; Pridgeon et al., 2014; Takamiya et al., 2011;
Wang et al., 2009; Xiang et al., 2013). Establishing a consistent
classification of Dendrobium is one of the greatest challenges
among orchidologists (Adams, 2011; Adams et al., 2006; Feng
et al., 2015a, 2015b; Morris et al., 1996; Xiang et al., 2013;
Yukawa et al., 1996; Yukawa & Uehara, 1996). A proposal
for intraspecific classification based on morphology alone is
almost impossible. For this purpose, it is also necessary to use
information stored in DNA.

To reconstruct the phylogeny, the plastid DNA data was oen
used: i.e., markers such as matK, rbcL, ycf 1, the trnL-trnF
fragment, rpl16, and rpl32 (Neubig et al., 2009; Niu et al.,
2020; Shaw et al., 2014). Unfortunately, the phylogenetic trees
obtained from these are oen inconsistent. ese markers are
easy to align but are sometimes too conservative and lack
sufficient variability. Consequently, the mentioned genes pro-
vide too little phylogenetic information and do not resolve
intra- and interspecies relationships (Neubig et al., 2009; Zhao
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et al., 2019). Studies of their heredity indicate only maternal
transmission, with no evidence of paternal or two-parental
inheritance (Cafasso et al., 2005). Consequently, cpDNA pro-
vides only half of the ancestry in hybrid and polyploid plants
and thus does not identify phylogenetic conflicts arising from
hybrid ancestry (Small et al., 2004). e selection of suitable
markers is, therefore, one of the most important steps in phy-
logenetic research. is task has been made easier by the use
of next-generation sequencing methods. In the last decade,
we have come to know the sequences of complete chloroplast
genomes, including many representatives of orchids (Zheng
et al., 2018; Zhitao et al., 2017). However, information on the
nuclear genome is still quite limited. ere is a lack of data
that unequivocally indicates the efficacy of a specific nuclear
marker, so we decided to focus our analyses primarily on this
area.

So far, among nuclear sequences, the most commonly used
markers are ITS. ese fragments are considered universal
due to the presence ofmany genetic variations and a high copy
number. A single copy is usually a combination of two ITS
fragments and genes encoding a large and small ribosomal
subunit, i.e. 18S-ITS1-5.8S-ITS2-26S. e main advantage of
nuclear genes is the higher rate of sequence evolution com-
pared to organelle genes. is is particularly important at
low taxonomic levels (Soltis & Soltis, 1998). Furthermore,
numerous molecular studies have been carried out using the
above-mentioned markers due to the ease and relatively low
cost of obtaining sequences, as well as their wide availability.

However, in recent decades, the use of nuclear low-copy
genes seemed to be a breakthrough in reconstructing the
course of phylogeny. Many of them contain large amounts
of genetic information, i.e., informative sites. Moreover, like
multicopy nuclear genes, they are also biparentally inher-
ited and oen show rapid rates of evolution (Small et al.,
2004). Furthermore, they are potentially ideal markers for
resolving polyploidy and hybridization (Górniak et al., 2010;
Hazra et al., 2020; Peng & Wang, 2008; Russell et al., 2010;
Small et al., 2004; Yin et al., 2020). In addition, low-copy-
number markers can be used to reconstruct phylogeny at
all taxonomic levels, especially where universal markers are
unable to generate strong phylogenetic hypotheses (Bratzel
et al., 2020; Sang, 2002). However, it should be remembered
that they also have their disadvantages. ey occur in low
copy numbers and sometimes require additional laboratory
work, such as cloning or designing their PCR primers (Li
et al., 2019). e Xdh gene has been identified as one of
the low-copy markers for use in phylogenetic analyses in
the framework of Górniak et al. (2010), demonstrating the
possibility of using the low-copy Xdh gene in representatives
of the Orchidaceae (Górniak et al., 2010). e use of Xdh
in determining phylogenetic relationships has occurred and
continues to do so among different genera belonging to
this family (Bulbophyllum ouars, Campylocentrum Benth.,
Paphiopedilum Pfitz.) and at various phylogenetic levels, as
well as among other plant groups (Chen et al., 2019; Górniak
et al., 2021; Jin et al., 2017; Kikuchi et al., 2020; Nowak et al.,
2023; Pessoa et al., 2018; Viruel et al., 2018). However, it is
worth noting that oen, due to the need to put more effort
into laboratory analyses, the authors of the papers are less
likely to decide to choose them.

is marker encodes a protein, xanthine dehydrogenase,
which belongs to the molybdenum cofactor-dependent class
of hydroxylase enzymes. Xdh plays an important role in the
degradation of nucleic acids in bacteria, plants, and animals
(Górniak et al., 2010; Rodríguez-Trelles et al., 2001). It takes
part in the regulation of normal plant growth and aging
processes (Han et al., 2020). It also participates in other
important physiological processes, such as plant response to
pathogen attack, acclimatization, and cell death associated
with the hypersensitivity response (Taylor & Cowan, 2004;
Watanabe et al., 2010). However, what is most important for
taxonomists and this work is that the Xdhmarker participates
in phylogenetic studies of plants. In previous studies on the
genus Dendrobium, the aforementioned gene has only been
used once by Moudi and Go (2015), who managed to obtain
sequences for 20 Dendrobium species from the Malaysian
area. erefore, we expected that it would also prove useful in
studies on the phylogeny of the nominal section.

e aim of our work was to test the suitability of the low-copy
Xdh gene for reconstructing section-level phylogeny based on
the nominal section of Dendrobium. We performed phyloge-
netic trees using both the Xdh gene and ITS, as well as trnL-
trnF and matK. We collected quantitative data for the afore-
mentioned markers and determined sequence length, num-
ber of fixed and variable sites, and number of parsimony-
informative sites. In addition, our results also enriched the
GenBank database with new sequences for the Xdh marker,
which has so far been rarely represented in this database.

2. Material andmethods

2.1. Material

2.1.1. Research object

In our studies, we used samples representing various species
of Dendrobium. e members of this genus are mainly epi-
phytes with a sympodial type of growth. ey are charac-
terized by a lateral inflorescence emerging from the upper
part of the stem, a mentum formed by lateral sepals and a
prominent column foot, four naked pollinia, and swollen ros-
tellum (Pridgeon et al., 2014). It should be noted that Den-
drobium is one of the larger genera within the Orchidaceae.
erefore, focus primarily on the nominal section. It contains
over 50 species, including the generitype Dendrobium monil-
iforme (L.) Sw. (Wood, 2006). e range of its representatives
is almost as wide as that of the genus, except for the area of
Micronesia and Melanesia (Takamiya et al., 2014). e main
morphological characters that distinguish this section are a
tall, leafy stem and multiple racemes carrying a few flowers
with an expanded, tomentose, and velvety lip (entire in most
species, without sidelobes). e color of the flowers is usually
pink to purple or white. ey bloom for about four weeks in
the spring (Wood, 2006).

2.1.2. Plant material

e plant material used in these studies came from the
gathering at the Department of Plant Taxonomy and Nature
Conservation at the University of Gdansk, Poland. We have
selected for testing all species that have ever been classified
into the section Dendrobium (Clements, 2006; Feng et al.,
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2014; Schuiteman, 2011; Takamiya et al., 2014; Wood, 2006;
Xiang et al., 2013). For each marker, we tried to use sequences
from the same species. In the case of the Xdh gene dataset, we
also extended our analyses to species outside the nominal
section. All DNA sequences obtained have been deposited in
GenBank. e ID numbers for these samples and GenBank
accession numbers are presented in Table S1. In addition, part
of the sequences representing outgroup taxa and species of
Dendrobium outside the nominal section for the Xdh marker
were downloaded from GenBank (Table S1). Sequences were
also taken for other utilized markers, and the list of these taxa
is included in Table S2.

2.2. Molecular methodologies

For the phylogenetic reconstruction and to test the utility of
the low-copy nuclear gene Xdh, we obtained 29 sequences
representing species of the nominal section.

2.2.1. DNA isolation

Total genomic DNA was extracted from 20–100 mg of dried
leaves stored in silica gel (Chase &Hills, 1991).e extraction
was performed using a Sherlock AX kit (A&A Biotechnology,
Poland), and the procedure was carried out with the attached
protocol. e pellets of DNA were suspended in 50 μL of TE
buffer.

2.2.2. Amplification and sequencing

Polymerase chain reaction (PCR) and sequencing reaction
were performed using the same primers. e X551F and
X1591R for the Xdh marker (Górniak et al., 2010), 101 F
and 102 R for nrITS fragments (Douzery et al., 1999), and
trnL-c and trnL-f for trnL-trnF markers (Taberlet et al.,
1991). PCRs were carried out in a total volume of 25 μL
containing 1 μL template DNA (∼10–100 ng), 1 μL of 10 μM
of each primer, 12.5 μL Hot-Start PCR Mix-Start Warm
(A&A Biotechnology, Poland), and water. e amplification
of the Xdhmarker used a touchdown method, which involves
lowering the attachment temperature of the primer by one
degree for the first seven cycles. It was done to increase
the efficiency of the reaction and is extremely important
when amplifying low-copy genes. e parameters were the
following: the initial denaturation 95 °C, 5 min and then
by seven cycles denaturing in 94 °C, 45 s; primer annealing
59 °C, 45 s (reducing 1 °C per cycle) and extending in 72 °C,
90 s. e next 30 cycles proceeded in 94 °C, 45 s; 52 °C, 45 s;
72 °C, 90 s, and final elongate 72 °C, 10 min. All products
of the PCR reaction were tested using electrophoresis in 1%
agarose gel at 110 V for 40 minutes and then were purified
using the PCR Clean-Up System (Promega, US) and DNA
Clean-Up Concentrator Kit (A&A Biotechnology, Poland)
following the manufacturer’s protocol. e prepared samples
were sequenced at Macrogen (Seoul, South Korea, http:
//dna.macrogen.com/eng/). e obtained sequence chro-
matograms were examined/edited using FinchTV (https:
//finchtv.software.informer.com/1.4/). e analyzed DNA
regions (nrITS, Xdh, matK, and trnL–trnF) were aligned
separately using the ‘align’ option according to the MUSCLE
algorithm (Edgar, 2004) with SeaView v.5.0 (Gouy et al.,
2021).

2.3. Phylogenetic analyses

To test for possible incongruence in topologies, we performed
phylogenetic analyses based on three methods: maximum
parsimony (MP), maximum likelihood (ML), and Bayesian
inference (BI). For the latter two, a nucleotide substitution
model is required to be determined. It was calculated using
the jModelTest 2 (Darriba et al., 2012), and based on the AIC
criterion, we selected GTR+G+I for all datasets analyzed.

e MP analyses with PAUP v. 4.0 (Swofford, 2000) used
a heuristic search strategy with tree-bisection-reconnection
(TBR) branch swapping and the MULTREES option in effect,
simple addition, and ACCTRAN optimization. e number
of retained trees was 10,000. All characters were equally
weighted (Fitch, 1971), while gaps were treated as missing
values. In addition, we performed a bootstrap analysis with
500 replicates (Felsenstein, 1985). Whereas the maximum
likelihood analyses were performed with RAxML-GUI 2.0
(Edler et al., 2021) by searching for the best-scoring ML
tree, the branch support was calculated with 1000 replicates.
We also carried out the Bayesian inference with MrBayes
(Ronquist et al., 2012) using four Markov-chain Monte Carlo
chains in two independent runs. Additionally, every run was
started from different random trees to ensure that individual
runs converged to the same result. For each dataset, different
numbers of generations with sampling every 100 generations
are inflicted. It depended on the achievement of convergence
of split frequencies below 0.01. e initial 25% of the sampled
generations of each chain were discarded as burn-in, and then
all saved trees were summarized in a majority rule consensus
tree.

3. Results

3.1. Statistical data showing the marker’s usefulness

A matrix consisting of 53 sequences was obtained for the
Xdh marker. Two species represented the outgroup, and the
remaining taxa were representatives of Dendrobium. In the
case of ITS, the dataset was obtained for 150 samples rep-
resenting a nominal section of Dendrobium and two as an
outgroup. At the same time, thematrices of the plastid regions
(matK and trnL-trnF, respectively) included 38 and 83 taxa of
the Dendrobium sect. Dendrobium and 2 outgroup samples.
For all the analyzed DNA fragments, the number of constant
and variable features, as well as parsimony-informative and
non-informative sites, were determined (Figure 1, Figure 2,
Table 1). Based on these data, the variability within a given
matrixwas calculated as the ratio of the number of parsimony-
informative sites to the number of all characters for each ana-
lyzed marker. e obtained results were plotted in a column
diagram (Figure 3). In addition, in Table 2, we present the tree
length, number of samples, value of consistency (CI), reten-
tion (RI), and homoplasy index (HI) for all analyzedmatrices.
We evaluated the efficacy of individual markers based on all
the data presented above and their interpretation of them as
a whole rather than only based on the analysis of a single
piece of information. However, it is worth mentioning that
the number of variable sites and parsimoniously informative
sites seem to be most important here. e reliability of the
obtained trees was determined based on calculations regard-
ing the support of node, using bootstrap values for clades
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Figure 1 Chart showing the percentage of the number of constant and variable characters for Xdh and ITS markers.

Figure 2 Chart showing the percentage of the number of constant and variable characters for trnL-trnF and matK markers.

Figure 3 Graph showing the percentage of variation for each region.

Table 1 Summary data for all regions used in Figure 1 and Figure 2.

Region Constant sites Variable sites Parsimony informative sites Parsimony non-informative sites

Xdh 497 (66%) 259 (34%) 141 (54%) 118 (46%)
ITS 223 (33%) 461 (67%) 410 (89%) 51 (11%)
trnL-trnF 735 (69%) 336 (31%) 183 (54%) 153 (46%)
matK 1149 (91%) 118 (9%) 44 (37%) 74 (63%)
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Table 2 Statistical data for all regions used in the phylogenetic analyses (CI – Consistency Index; RI – Retention Index;
HI – Homoplasy Index).

Region Tree length Number of Samples CI RI HI

Xdh 379 53 0.794 0.876 0.206
ITS 1841 152 0.441 0.853 0.559
trnL-trnF 577 85 0.730 0.790 0.270
matK 138 40 0.877 0.874 0.123

Figure 4 e reliability of ML trees for 4 markers (Xdh, ITS, trnL-trnF, matK) was calculated using bootstrap support.

Figure 5 e reliability of BI trees for 4 markers (Xdh, ITS, trnL-trnF, matK) was calculated using posterior probability.

generated by the ML method and posterior probability for
BI analysis. As suggested by Kores et al. (2001), the level of
bootstrap support above 85% is considered strong, between
85% and 71% asmoderate, and below 70% as weak. In the case
of a posterior probability, all values equal to or greater than

0.95 were considered strong, while the others were treated
as weak (Cummings et al., 2003; Simmons et al., 2004). Our
calculations for individual markers are summarized in two
graphs – Figure 4 and Figure 5.

Acta Societatis Botanicorum Poloniae / 2024 / Volume 93 / Article 177922
Publisher: Polish Botanical Society

5



Burzacka-Hinz et al. / Phylogenetic utility of Xdhmarker

Figure 6 (A, B) e majority-rule consensus tree resulted in the Bayesian analysis for the nrITS marker of the Dendrobium sect.
Dendrobium. e numbers above branches indicate posterior probability (PP) while the numbers below branches mean values of
bootstrap support accordingly of maximum likelihood and maximum parsimony analyses. e BS values of less than 50% were
marked as -.
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Figure 7 e majority-rule consensus tree resulted in the Bayesian analysis for the trnL-trnF marker of the Dendrobium sect.
Dendrobium. e numbers above branches indicate posterior probability (PP) while the numbers below branches mean values of
bootstrap support accordingly of maximum likelihood and maximum parsimony analyses. e BS values of less than 50% were
marked as -.
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Figure 8 e majority-rule consensus tree resulted in the Bayesian analysis for the matK marker of the Dendrobium sect.
Dendrobium. e numbers above branches indicate posterior probability (PP) while the numbers below branches mean values of
bootstrap support accordingly of maximum likelihood and maximum parsimony analyses. e BS values of less than 50% were
marked as -.

3.2. Phylogenetic analyses

Regardless of the method used, for ITS, trnL-trnF, and matK
markers, tree topology turned out to be similar. erefore,
in this paper, we present only those obtained using the BI
method, but we also add the nodes’ values of bootstrap
support (BS) obtained from both MP and ML analyses
(Figure 6A–B, Figure 7, Figure 8). For the trees obtained based
on the Xdh gene matrix, we decided to present the results
from both ML and BI analysis (Figure 9). Admittedly, the
differences between the two are not very glaring. However,
we tested the usefulness of this marker and decided that two
trees should be displayed in this case.

Phylogenetic relationships within the nominal section remain
unresolved regardless of the method used (ML or BI). On
both trees, species from this section form a strongly sup-
ported monophyletic clade (Figure 9A–B, PP=1, BS=96) with
Epigeneium suberectum (Ridl.) Summerh. as a sister taxon.
Clades, including representatives of each section, diverged as
polytomic branches from a common ancestor. We obtained
the maximum support of posterior probability (PP=1) and

bootstrap (BS=100) at this node. erefore, it can be inferred
that they are closely related, but it is not possible to speculate
on the relationship between them.

4. Discussion

AlthoughDendrobium is a widely studied genus, phylogenetic
relationships, especially at lower taxonomic levels (e.g., sec-
tion level), are oen unclear and difficult to define. is is
partly due to the high degree of morphological variation and
partly to the selection of unjustified markers for phylogenetic
reconstruction. In our research, we performed statistical anal-
yses to demonstrate the utility of the novel low-copy marker
Xdh.

Based on our phylogenetic analyses using the maximum par-
simony, maximum likelihood, and Bayesian inference, this
marker is believed to not perform well at all levels, at least
for the genus Dendrobium. We obtained low support for both
the value bootstrap and posterior probability at most nodes
for clades embracing species from the same section (Figure 4,
Figure 5). Moreover, we observed many polytomic branches.
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erefore, we infer that the Xdh gene is unsuitable for solving
phylogenetic relationships within closely related species (i.e.,
within a single section). Consequently, it also does not differ-
entiate relationships within a nominal section (Figure 9A–B).
In fact, all samples representing species of this section are
grouped into a single coherent clade, with strong support
for both posterior probability and bootstrap (PP=1, BS=96;
Figure 9A). However, it is impossible to establish relationships
between different species within this clade. Nevertheless, we
want to emphasize that this does notmean it cannot be used in
phylogenetic studies. Some authors have successfully used this
marker, which means that at higher taxonomic levels, such as
genus or intrafamily, it can givemore reliable results (Górniak
et al., 2010, 2014; Moudi & Go, 2015; Sang, 2002).

According to our analyses, another, more widespread nuclear
marker, i.e., the ITS, performs better in this case. ITS is the
most variable marker among the four analyzed regions (Fig-
ure 3). In addition, it is quite short and is easier to amplify,
due to the significant number of copies in the genome. It is
worth mentioning the work of Nguyen et al. (2020) at this
point, in which thismarker was used. Admittedly, in his study,
it was used for species identification, as in the case of Duong
et al. (2018) work, but among other markers such asmatK, or
rbcL, it proved to be the most valuable. Likewise, Feng et al.
(2015b) point to the ITS as a suitable barcode and indicate
its potential for solving phylogenetic problems. As an effec-
tive tool for accurate identification and classification, the ITS
regions were also recognized in the paper of Liu et al. (2019),
which primarily analyzed species of two sections of Dendro-
bium: Formosae (Benth. & Hook. f.) Hook. f. and Chrysotoxae
Kraenzl. A similar opinion was also expressed by Xiang et al.
(2013), whose article additionally presents statistical analyses
of the genes used. Not only has this marker enjoyed suc-
cess recently, but earlier works, e.g., of Lau et al. (2001) or
Tsai et al. (2004), have indicated that this marker is suitable
and widely used in phylogenetic studies. e ITS region has
been used not only to determine relations withinDendrobium
but also for other taxa belonging to the Orchidaceae, e.g.,
Bifrenaria Lindl., Cymbidium Sw., Dactylorhiza Neck. (Burke
et al., 2008). A direct comparison of the ITS and Xdhmarkers
shows that the ITS is three times more variable than the other
and containsmore parsimony-informative sites (Figure 1, Fig-
ure 3). In this case, greater variability enables more reliable
solutions to taxonomic problems also at lower levels, which
is extremely important in the case of Dendrobium. Better-
supported clades also occur on trees generated using the ITS
rather than Xdh. is is clearly shown in the graph, where we
present the percentage of well-supported tree clades for the
analyzed markers (Figure 4, Figure 5).

5. Conclusions

It should be emphasized that both nuclear markers turned
out to be more valuable than plastid ones to solve phyloge-
netic relationships on various taxonomic levels. In our analy-
ses, neither matK nor trnL-trnF showed a satisfactory effect.
e information obtained proves that the nuclear multi-copy
marker is more valuable for studying the genus Dendrobium
than the low-copy gene and plastid regions.

6. Supplementary material

e following supplementary material is available for this
article:

Table S1. List of species ofDendrobium used in the molecular
study for markers Xdh, ITS, trnL-trnF including Accession
Number and GenBank Accession Number.

Table S2. List of species ofDendrobium used in the molecular
study for markers ITS, trnL-trnF, matK including GenBank
Accession Number.
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