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Abstract
Aldolase exhibits multiple functions in a variety of organisms, including fungi,
unicellular algae and plants, and so on. Furthermore, different isoforms of fructose
1,6-bisphosphate aldolase (FBA) exhibit significantly different characteristics and
functions. is review describes the structures, characteristics, and functions of
FBAs derived from diverse organisms, including FBA II in pathogen microor-
ganisms, as well as FBA I mainly in unicellular algae and plants. Differences
between FBAandFBP aldolase-phosphatase bifunctional enzyme (FBA/P) are also
discussed. Finally, we suggest several potential research questions regarding the
functions of FBA in higher plants.
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R5P: ribose 5-phosphate;

Ru5P: ribulose 5-phosphate;

G6P: glucose-6-phosphate;

G1P: glucose 1-phosphate;

ADPG: ADP-glucose;

UDPG: UDP-glucose;

FBA/P: FBP aldolase-phosphatase bifunctional enzyme;

AMPK: adenosine monophosphate-activated protein kinase;

ROS: reactive oxygen species;

RNS: reactive nitrogen species;

TBP: D-tagatose 1,6-bisphosphate
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1. Introduction

Phosphorylated ketose and aldose are essential metabolites in
cellular pathways across all species (Tittmann, 2014). Aldolase
enzymes catalyze retroaldol and aldol reactions, resulting
in C–C bond cleavage or formation (Galkin et al., 2009).
Fructose-1,6-bisphosphate aldolase (E.C. 4.1.2.13), or fruc-
taldolase (FBA), is a well-characterized aldolase that splits the
carbon skeleton of ketose phosphates (Galkin et al., 2009).e
function of this enzyme is amphibolic, being involved in both
catabolic (i.e., glycolysis) and anabolic (i.e., gluconeogenesis
and Calvin–Benson cycle [CBC]) pathways. Specifically, FBA
catalyzes the reversible conversion of hexoketose D-fructose-
1,6-bisphosphate (FBP) to ketose dihydroxyacetone phos-
phate (DHAP) and aldose D-glyceraldehyde-3-phosphate
(G3P) in both the gluconeogenic/glycolytic pathway (the
Embden–Meyerhof–Parnas [EMP] pathway) and the CBC.
Together with the reductive tricarboxylic acid (TCA) cycle,
the reductive pentose phosphate cycle, and the Entner-
Doudoroff pathway, the EMP pathway is considered a central
metabolic pathway whose enzymes are widely distributed
(Ronimus & Morgan, 2003). Research suggests that the
EMP pathway likely originated as an anabolic pathway and
gained a role in catabolism later (Romano & Conway, 1996;
Ronimus&Morgan, 2003). Because of its role in carbohydrate
biosynthesis, the CBC pathway is crucial to plant metabolism,
growth, and survival (Figure 1).

Based on their distinct evolutionary history and reaction
mechanisms, two unrelated classes of FBAs have been iden-
tified: class I (FBA I) and class II (FBA II) (Alefounder et al.,
1989; Kobes et al., 1969; Lebherz&Rutter, 1969). FBAs of both
classes exhibit the same (β/α)8-triosephosphate isomerase-
barrel fold and catalyze the same reactions (Lorentzen et al.,
2004), suggesting that they share a common origin (i.e., the
ancestral β/α barrel) (Nagano et al., 2002; Sanchez et al., 2002).
However, the classes differ significantly from one another in
amino acid sequence homology (Imanaka et al., 2002; Marsh
& Lebherz, 1992), conserved catalytic residues (Blom et al.,
1996), active site locationswithin the TIMbarrel, and reaction
mechanisms (Nagano et al., 2002; Sanchez et al., 2002),
suggesting independent evolution and/or large insertions or
deletions. Studies in both artificially and naturally derived
aldolase mutants indicate that changes in protein structure or
stability can alter enzymatic activity (Rellos et al., 2000), even
plant death in mutant Arabidopsis (Carrera et al., 2021).

2. Structure and characteristics of FBA I

edistribution of FBA during evolution is complex and con-
tradictory. FBA I members are found in higher organisms,
including animals and vascular plants, green algae, ferns, and
mosses. However, FBA I members are also found in archaea
(Lorentzen et al., 2004; Morse & Horecker, 1968; Rutter, 1964;
Sauve & Sygusch, 2001; omson et al., 1998), suggesting a
conserved evolutionary history between the two FBA classes
(Siebers et al., 2001). e crystal structure of FBA I indicates
that the enzyme of 160 kDa is homo-tetrameric and that each
subunit contains an independent, active site (Plaumann et al.,
1997; Siebers et al., 2001; Sygusch et al., 1987; omson et al.,
1998). e active site of FBA I is a lysine residue, which can
form a Schiff-base intermediate with the substrate (Rutter,

1964). e activity of FBA I can be inhibited by borohydride
(NaBH4) (Marsh & Lebherz, 1992; Siebers et al., 2001).

3. A novel FBA isoform

In 1998, a novel FBAwas identified in Escherichia coli (om-
son et al., 1998). According to the Schiff-base mechanism,
the novel FBA behaves like FBA I, although the FBA from
E. coli shares very low sequence similarity with classical
class I FBAs. Because the FBA from E. coli shares somewhat
higher homology (13–20%) with plant dehydrins and is
dehydration-responsive, it was originally mis-annotated as
dehydrin A (DhnA, dhnA) (omson et al., 1998). However,
when the gene product was biochemically characterized, it
was found to share all the properties of classical class I FBAs
(omson et al., 1998). Orthologous sequences have been
identified in other microbial genomes, including from the
archaea Archaeoglobus, Pyrococcus horikoshii, Methanococcus
jannaschii, Methanobacterium thermoautotrophicum, and
Aeropyrum pernix, and from the bacterium Aquifex aeolicus,
a Gram-negative bacterium that belongs to the deeply rooted
phylumAquificae (Dandekar et al., 1999; Galperin et al., 2000;
Guiral & Giudici-Orticoni, 2021). In some archaea, both FBA
I and FBA II activities have been demonstrated (Altekar &
Dhar, 1988; D’Souza & Altekar, 1982; Krishnan & Altekar,
1991; Yu et al., 1994), although no genes encoding classical
FBA I or FBA II have been identified in the fully-sequenced
archaeal genomes (Lorentzen et al., 2004). When the dhnA
gene homologs from the hyperthermophilic archaeon er-
moproteus tenax and the archaeon Pyrococcus furiosus were
expressed in E. coli, the recombinant FBA exhibited catabolic
substrate specificity for FBP, as well as metal-independent
Class I FBA activity by way of a Schiff-base mechanism
(Siebers et al., 2001).

Phylogenetic analyses of the T. tenax- and P. furiosus-derived
enzymes strongly suggest that this novel enzyme family
represents a typical archaeal FBA (Siebers et al., 2001). In
Pyrobaculum aerophilum, which apparently possesses an
otherwise complete glycolytic pathway, no aldolase genes
have been identified. However, this may be because the
archaeal FBA represents a new family of aldolases, which is
significantly divergent from the classical FBAs and would be
difficult to identify by conventional sequence-comparison
techniques. Some organisms do possess genes encoding FBA
I or FBA II, but due to low sequence similarity with known
gene families, these novel FBAs have been designated archaeal
Class I aldolases (FBA IA) (Siebers et al., 2001). On the one
hand, although FBA IA shares low sequence similarity (20%)
with classical FBA I, it is considered homologous but evolu-
tionarily distant due to the presence of a Schiff-base-forming
lysine and a common phosphate-binding site (Siebers et al.,
2001). On the other hand, the highly divergent sequence
signatures suggest a distant relationship between FBA IA and
FBA II (Galperin et al., 2000). e highly conserved active
site shared between FBA I and FBA IA suggests that they
share a common ancestor; however, no eukaryotic FBA IA
homologues have been discovered to date (Lorentzen et al.,
2004).

e three-dimensional structure of FBA IA has been charac-
terized as either a homo-octamer, a decamer, or even higher
oligomers (Krishnan & Altekar, 1991; Siebers et al., 2001;
omson et al., 1998). For example, the T. tenax-derived FBA
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Figure 1 Calvin cycle and Embden–Meyerhof–Parnas pathways in different cellular compartments.
RuBP: ribulose 1,5-bisphosphate; 3PGA: 3-phosphoglycerate; 1,3-PGA: 1,3-bisphosphoglycerate; DHAP: dihydroxyacetone
phosphate; GAP: glyceraldehyde 3-phosphate; FBP: fructose 1,6-bisphosphate; F6P: fructose 6-phosphate; E4P: erythrose
4-phosphate; SBP: sedoheptulose 1,7-bisphosphate; S7P: sedoheptulose 7-phosphate; Xu5P: xylulose 5-phosphate; R5P: ribose
5-phosphate; Ru5P: ribulose 5-phosphate; G6P: glucose-6-phosphate; G1P: glucose 1-phosphate; ADPG: ADP-glucose; UDPG:
UDP-glucose;
1⃝ RuBP carboxylase/oxygenase (Rubisco); 2⃝ 3PGA kinase (PGK); 3⃝ GAP dehydrogenase (GAPDH); 4⃝ triose phosphate
isomerase; 5⃝ FBP aldolase (aldolase); 6⃝ fructose 1,6-bisphosphatase (FBPase); 7⃝ transketolase (TK); 8⃝ sedoheptulose
1,7-bisphosphatase (SBPase); 9⃝ ribulose phosphate 3-epimerase; 10⃝ ribose 5-phosphate isomerase; 11⃝ phosphoribulokinase
(PRK); 12⃝ hexokinase; 13⃝ phosphoglucose isomerase; 14⃝ phosphofructokinase; 15⃝ glyceraldehyde-3-phosphate dehydrogenase;
16⃝ phosphoglyceric kinase; 17⃝ phosphoglyceromutase; 18⃝ enolase; 19⃝ pyruvate kinase; 20⃝ alpha-and β-amylase;
21⃝ glucophosphomutase; 22⃝ phosphorylase; 23⃝ invertase; 24⃝ sucrose synthase; 25⃝ uridine diphosphate glucose pyrophosphorylase.
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IA (Tt-FBA IA) forms a homo-decamer consisting of two
identical pentamer rings, the latter of which is a highly stable
structure for its complete closed loop, and the buried sur-
face area in pentamer formation is as high as 26% of the
total accessible surface area of the monomer (Lorentzen et al.,
2004) (Figure 2). e two pentamers assemble with the barrel
N-termini facing each other and the C-terminal active sites
facing the surface. Furthermore, the pentamer interface is
highly hydrophobic, which likely ensures thermostability.

InE. coli, a different aldolase, L-fuculose-1-phosphate aldolase
(fucA), possesses as much as 4% fructose-1,6-bis-phosphate
aldolase activity (Dreyer & Schulz, 1993). However, it has
been experimentally challenging to detect FBA activity in
archaea; where activity has been detected, the activity was
measured only in the direction of FBP formation and failed
in the reverse direction (Jahn et al., 2007). is discrepancy
is baffling because the reaction catalyzed by FBA should be
reversible. Many archaea, such as ermococcus kodakarensis
and Sulfolobus tokodaii (Nishimasu et al., 2004), possess
a bifunctional FBP aldolase-phosphatase (FBA/P), which
exhibits both FBP aldolase and FBP phosphatase activity
(Say & Fuchs, 2010). FBA/P mediates the aldol condensa-
tion of heat-labile dihydroxyacetonephosphate (DHAP) and
glyceraldehyde-3-phosphate (GAP) to FBP, as well as the
subsequent irreversible hydrolysis of the product to yield
stable fructose-6-phosphate (F6P) and inorganic phosphate
by remodeling its active site according to the respective
catalytic requirements (Du et al., 2011; Siebers et al., 2001).

4. Structure and characteristics of FBA II

Class II FBAs (FBA II) are primarily found in bacteria and
fungi (Rutter et al., 1968). e class II FBAs typically exhibit
molecular weights of approximately 80 kDa, and bacterial
FBA IIs exhibit higher crystal structure variability than those
from fungi (Plaumann et al., 1997; Siebers et al., 2001; om-
son et al., 1998). Additionally, contrary to FBA of class I, bac-
terial FBA IIs have been discovered to contain subunits rang-
ing from 27–40 kDa inmass (Plaumann et al., 1997;omson
et al., 1998). Furthermore, class II FBAs do not share a com-
mon active site with class I FBAs.

Studies on organized structures isolated from prokaryotic
and eukaryotic organisms demonstrate that, in vivo, enzymes
always bind to other proteins in a highly specific manner
to form more complex structures, as well as interact with
other cellular components, such as membranes (Graciet
et al., 2004). ese highly complex structures participate in
an array of cellular functions (Gavin et al., 2002; Kumar &
Snyder, 2002). FBA II has been found to be localized to the
cell wall, cell membrane, and cell surface. Whereas FBA I
is always located in chloroplast or cytoplasm (de Paz et al.,
2007). Furthermore, class II FBAs require divalent metal
cations at their active sites in order to stabilize the carbanion
intermediate (Hall et al., 1999; Siebers et al., 2001; Zgiby
et al., 2000, 2002) and their activity can be competitively
inhibited by EDTA, a metal ion chelating agent. Specifically,
most class II aldolases require Zn2+ for activation. However,
the Deinococcus radiodurans-derived aldolase preferentially
utilizes Mn2+, rather than Zn2+, as a cofactor (Zhang et al.,
2006).

Both classes of FBAs have been found in Mycobacterium
tuberculosis (Bai et al., 1974), E. coli (Stribling & Perham,
1973), and the thermotolerant Gram-positive methylotroph
Bacillusmethanolicus (Stolzenberger et al., 2013). InB.methano-
licus, two distinct class II enzymes were found to be encoded
on the nucleoid and on a plasmid, respectively (Stolzenberger
et al., 2013). Based on their crystal structures, class II FBAs
can be classified as either type A or type B (Plaumann et al.,
1997). TypeA enzymes are dimeric and are primarily involved
in glycolysis and gluconeogenesis, while type B enzymes can
be either dimeric, tetrameric, or octameric (Nakahara et al.,
2003; Sauve & Sygusch, 2001).

5. FBA in pathogenic microorganisms

Most FBAs isolated from pathogenic microorganisms belong
to class II. Studies suggest that pathogen-derived FBAs take
on different roles and that their function is positively corre-
lated with the age and identity of the host (Ling et al., 2004).
Pathogen-derived FBAs may perform two or more biochemi-
cal functions utilizing a single polypeptide chain by involving
in an array of intracellular biochemical functions (Henderson
& Martin, 2011; Sherawat et al., 2008) in several bacterial
species that cause illness (Shams et al., 2014). Knock-down of
these aldolases resulted in cell death (Lew & Tolan, 2012) and
adenosine monophosphate-activated protein kinase (AMPK)
activation, even under high glucose conditions (Zhang et al.,
2017).

Pathogen-derived FBAs have been reported to exhibit non-
glycolytic functions. In Francisella tularensis, an intracellular
pathogen responsible for tularemia infects a variety of cell
types, FBA has been reported to function as a transcriptional
regulator, affecting the pathogenicity of the organism (Ziveri
et al., 2017). Furthermore, F. tularensis-derived FBA (Ft-FBA)
is responsive to oxidative stress and appears to lie at the
intersection of carbon metabolism and regulation of host
redox homeostasis, causing the generation of reactive oxygen
and nitrogen species (ROS/RNS) in infected phagocytic
cells. In higher plants, ROS is usually accumulated under
low-temperature conditions and results in the inhibition
of Calvin cycle enzymes. e antioxidant defense system
is always there to counter reactive oxygen/nitrogen species
(ROS/RNS) and to stimulate the activation of signal cas-
cade inside the cells (Barreca, 2021). e so-called antiox-
idants interact directly or indirectly with the radicals and
inhibit or quench free radical reactions mainly based on
their reducing capacity or hydrogen atom-donating capacity.
DHAP, a potentially reducing substance, and the reductive
G3P are both potential antioxidants to neutralize ROS/RNS.
In yeast, FBA1 was discovered to interact with the RNA
polymerase III complex via coimmunoprecipitation and
tRNA transcriptional regulation experiments (Ciesla et al.,
2014). e cell surface-localized FBAs of Mycobacterium
tuberculosis (Mtb-FBA) and genus Paracoccidioides (Pr-FBA)
were demonstrated to increase virulence by binding to human
plasminogen (Chaves et al., 2015; de Paz et al., 2007; Puckett
et al., 2014). Furthermore, these enzymes were found to be
able to activate host plasminogen to form plasmin, potentially
increasing the fibrinolytic capacity of the pathogens (Chaves
et al., 2015).e cell surface-localized FBA from Streptococcus
suis SS9 (Ss-FBA) has been found to be immunogenic (Wu
et al., 2008) and act as a host receptor for Streptococcus
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Figure 2 Ribbon representation of the crystal structure of the doughnut-shaped decameric FBP aldolase from T. tenax viewed
along the 5-fold axis of the pentamers (Lorentzen et al., 2004). e two pentamers are colored blue and green, respectively, and the
substrate DHAP is shown in a spacefill in red representation. Each monomer has one substrate molecule bound at the active site
located in the C-terminal of the TIM barrel (for clarity, the substrates are only shown for one of the two pentamers).

pneumoniae (Blau et al., 2007). FBAderived fromMycoplasma
bovis (Huang et al., 2019) and Neisseria meningitides (Tunio
et al., 2010a) act as antigens and interact with host cells during
the process of adhesion and are thus regarded as potential
therapeutic targets. InNeisseria spp., the surface-exposed FBA
is highly conserved, and its surface localization and anchoring
appear to be independent of its aldolase activity (Shams et al.,
2016; Tunio et al., 2010a, 2010b). In Streptococcus oralis,
intracellular FBA is reported to be released during exposure
to alkalinity stress (de Paz et al., 2007; Wilkins et al., 2003),
suggesting that FBA may play a role in physiological adapta-
tion to environmental stress (de Paz et al., 2007; Shams et al.,
2014). For higher plants, environmental alkalinization that is
caused by increasing population and degradation of natural
environments has become one of the most severe limitations
of the development of global agriculture (Shamsabad et al.,
2022). It will be of great practical importance to study the
plant resistance mechanisms in alkaline stress conditions
for the development of strategies for tolerance to alkalinity
stresses.

In the first reported example of a native class II aldolase
exhibiting reduced stereoselectivity, the thermophileermus
caldophilusGK24-derived FBA (Tca-FBA),whosemonomeric
structure exhibits a typical (α/β)8 barrel, was found to pro-
duce both FBP and D-tagatose 1,6-bisphosphate (TBP; a
FBP stereoisomer produced from C3 substrates such as
glyceraldehyde-3-phosphate and dihydroxyacetone phos-
phate). Furthermore,manipulating the concentrations of G3P
and DHAP was found to alter the FBP: TBP ratio (Lee et al.,
2006).e Tca-FBA active site was found to be responsible for
the relaxed discrimination between FBP and TBP, as it allows
G3P more conformational freedom. Specifically, Asp80 was

found to be primarily responsible for the chiral discrimination
between FBP and TBP in Tca-FBA (Lee et al., 2006), while
Asp109 in Eco. FBA appeared to significantly influence the
reaction mechanism (Zgiby et al., 2000).

In Giardia lamblia, only a class II aldolase (Gl-FBA) has
been identified (Galkin et al., 2007), which shares a greater
sequence homology and crystal structure similarity with
Ec-TBA (38%) than with Ec-FBA (23%), both derived from
E. coli. Utilizing FBP as a substrate (Galkin et al., 2007),
Gl-FBA employs an aspartic acid (Asp83) for its catalytic
apparatus, and the activity of this enzyme was found to
be halted by replacing Asp83 with an alanine residue. e
active site of Gl-FBA is made up of three subsites: the DHAP
binding site, the G3P binding site, and the Zn2+ binding site.
Unlike Tca-FBA, Gl-FBA does not cleave TBP but recognizes
TBP as a competitive inhibitor (Galkin et al., 2007, 2009).
Gl-FBA is produced in the cytoplasm, and RNA silencing
results in cell death (Galkin et al., 2007). Taken together, these
results suggest that FBA may be a potentially useful target
for the development of therapeutic small-molecule inhibitors
(Shams et al., 2014).

6. Function of FBA I in animals

FBA derived from animals belongs to class I. In mammals,
three tissue-specific FBAs have been isolated, each of which
has distinct physical features: musclealdolase A (FBA Ia),
liver and kidney aldolase B (FBA Ib), and brain aldolase C
(FBA Ic) (Gefflaut et al., 1995). Compared to FBA Ib, FBA
Ia, and FBA Ic exhibit higher activity toward PBP (Penhoet
& Rutter, 1971). e amino acid sequences of these isozymes
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were found to be highly conserved at the subunit interface
and the active site. e FBA derived from rabbit muscle
was found to be a homotetramer containing two interfaces:
interfaceA and interfaceB (Figure 3). InterfaceA is comprised
of helix-packing interactions and is relatively hydrophobic,
while interface B inhibited loop-loop interactions and is
hydrophilic (Sherawat et al., 2008).

Sufficient oxygen is one of the most critical environmental
conditions for animals because oxygen is crucial for oxidative
phosphorylation, and insufficient oxygen results in inter-
ruption of mitochondrial ATP production (Storey & Storey,
2004). Glycolytic enzymes, such as phosphofructokinase
(PFK), pyruvate kinase (PK), and lactate dehydrogenase
(LDH), have been found to be important during anoxic
conditions (Brooks & Storey, 1989; Willmore et al., 2001;
Xiong & Storey, 2012). As a glycolytic enzyme, FBA catalyzes
the conversion of FBP to G3P and DHAP, facilitating the
production of ATP and lactate under anaerobic conditions.
In mammals, the expression of aldolase in liver tissue typi-
cally occurs only during early development. However, under
certain conditions, different aldolase heterotetramers may be
upregulated, such as in turtles exposed to anoxia (Dawson
et al., 2013; Lebherz & Rutter, 1969). In addition, during
the long-term anaerobic condition, an overall greater affinity
of liver aldolase for FBP and strict regulatory control over
glycolysis (converting hexose phosphates to lactate to support
the ATP requirements) made the contribution (Dawson et al.,
2013). is may be the reason why the relative content of
FBP in the liver doubled in T. s. elegans when exposed to the
anaerobic condition for only 1 h (Kelly & Storey, 1988).

In addition to its enzymatic role, considerable evidence sug-
gests that aldolase participates in non-metabolic processes.
Aldolases are involved in binding interactions with several
other proteins, although the function of these aldolases has
not been fully characterized (Sherawat et al., 2008). FBA Ia
and FBA Ic can act as neurofilament RNA-binding proteins,
thus regulating transcriptional activity (Canete-Soler et al.,
2005). FBA Ia can also bind to filamentous actin (F-actin) in
vivo, playing a role in the assembly of the actin cytoskeleton
(Arnold et al., 1971; Arnold & Pette, 1968; O’Reilly & Clarke,
1993). Furthermore, FBA Ia is associated with vacuolar H+-
ATPases (V-ATPase) andmediates their assembly, expression,
and proton pump activity (Lu et al., 2004). In the later study,
it was demonstrated that the ADP-ribosylation factor (Arf)
guanine nucleotide exchange factor (ARNO) directly inter-
acted with all a-isoforms (a1–a4) of the V-ATPase. Where-
aer, pull-down experiments showed that aldolase interacted
with ARNO to form the aldolase -ARNO/Arf6-ATPase com-
plex to regulate the gene expression (Merkulova et al., 2011).
As a result, a novel emerging field of aldolase biology is its
central role in cytoskeleton rearrangement and, cell motility
and signal transduction. Aldolase has also been reported to
play a role in the regulation of proteins involved in endocy-
tosis. Sorting nexin 9 (SNX9) functions in a complex with
the GTPase dynamin-2 at clathrin-coated pits to provoke the
fission of vesicles to complete endocytosis. At the same time,
the localization of the SNX9-dynamin-2 complex to clathrin-
coated pits can be blocked by interactions with the abun-
dant glycolytic enzyme aldolase (Lundmark&Carlsson, 2004;
Rangarajan et al., 2010).

7. Function of FBA I in photosynthetic plant tissues

FBAs have been identified and characterized in several plant
species, including garden pea (Pisum sativum) (Anderson &
Advani, 1970), maize (Zea mays) (Dennis et al., 1988; Kelley
& Freeling, 1984), oats (Avena sativa) (Michelis & Gepstein,
2000),Dunaliella salina (Zhang et al., 2002),Arabidopsis (Car-
rera et al., 2021; Lu, 2012), soybean (Glycine max) (Russell
et al., 1990), rice (Oryza sativa) (Kagaya et al., 1995; Umeda &
Uchimiya, 1994; Zhang, 2014), spinach (Spinacia oleracea)
(Krüger, 1983; Pelzer-Reith et al., 1993), potato (Solanum
tuberosum) (Haake et al., 1998), tobacco (Nicotiana tabacum)
(Yamada et al., 2000), Codonopsis lanceolate (Purev et al.,
2008), Sesuvium portulacastrum (Fan et al., 2009), alfalfa
(Medicago sativa) (Long et al., 2010), wheat (Triticum aes-
tivum) (Lv, 2011; Lv et al., 2017), moso bamboo (Phyllostachys
pubescens) (Lao et al., 2013), oil tree (Camellia oleifera) (Zeng
et al., 2014), and tomato (Solanum lycopersicum) (Cai et al.,
2016). Interestingly, several FBA I isoform members have
been identified across different plant species, including 8 in
Arabidopsis (AtFBA1-8) (Lu, 2012), 8 in tomato (SlFBA1-8)
(Cai et al., 2016), 16 in tobacco (NtFBA1-16) (Zhao et al.,
2021), 21 in wheat (TaFBA1-21) (Lv et al., 2017), and seven
isoforms in rice (ALD Y and OsFBA1-6) (Zhang, 2014),
indicating that contraction and expansion of the FBA gene
family have occurred over the evolutionary history of these
species.

Exposure to changing or stressful environmental conditions
can significantly impact plant growth and development. e
role of FBA in regulating the growth and development of
plants has received considerable attention in recent years. Two
photosynthetic tissue isoenzymes have been identified, one of
which is localized to the cytosol (cFBA) and the other ofwhich
is localized to the chloroplast (ctFBA) (Anderson & Advani,
1970; Anderson & Pacold, 1972). Among the eight members
in Arabidopsis, there are three members (AtFBA1–3) share
high similarities with FBAs occurring at chloroplast, and
five members (AtFBA4–8) share high similarities with FBAs
localized in the cytoplasm (Lu, 2012). Among the eight
members in tomato, there are five (SlFBA1–5) and three
(SlFBA6–8) SlFBA proteins were predicted to be localized in
chloroplasts and cytoplasm, respectively (Cai et al., 2016).
In tobacco, phylogenetic analysis was processed, and the
result revealed that these FBA genes could be categorized
as subisoform I (NtFBA1–10 located in the chloroplast) and
subisoform II (NtFBA11–16 located in the cytoplasm) (Zhao
et al., 2021). Predicting subcellular localization fide OsFBA5
andOsFBA6 are likely to be located in the chloroplast, and the
other members are likely to locate in the cytoplasm (Zhang,
2014).e activity of purified ctFBAwas found to be inhibited
by high concentrations of ribulose-1,5-bisphosphate (RuBP)
and rescued by DHAP. at the two compartment-specific
isoenzymes had no cross-reactivity was later confirmed in
spinach leaves through anion-exchange chromatography on
DEAE-cellulose (Krüger, 1983). Specifically, chloroplast-
derived aldolase was found to be responsible for 85% of the
total activity, while cytosol-derived aldolase was found to be
responsible for only 15% of spinach leaves. Furthermore,
cross-reaction with anti-(carrot ctFBA)-IgG was detected
between cFBA and ctFBA (Moorhead & Plaxton, 1990),
providing an effective method for the separation of these
two types of FBAs for functional characterization. Utilizing
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Figure 3 Rabbit muscle fructose-1,6-bisphophate aldolase tetramer (Sherawat et al., 2008). Each monomer is colored separately,
with the A and B interfaces indicated by arrows as described previously. e sites of the D128V substitutions are indicated by red
spheres on interface B, and the C- and N-termini are labeled for monomer A.

this technique, 8 FBAs were identified in Arabidopsis, which
were found to be responsive to glucose, fructose, sucrose,
phytohormones, and environmental stress (Lu, 2012).

More evidence that FBA contributes to regulating growth
and development is found in Arabidopsis. Although Ata2
mutants exhibited a slow growth rate, their overall devel-
opment remained normal. However, Ata1 mutants exhib-
ited no such phenotype, although the FBAs shared high
homology. A combination of Ata1 and Ata2 mutants
exhibited inhibition of photo-autotrophy, which proved to be
lethal. AtFBA3 is predominantly expressed in heterotrophic
tissues and affects photo-assimilate export, leading to growth
inhibition (Carrera et al., 2021). Furthermore, a8 mutant
Arabidopsis, which encodes a cytosolic localized protein,
exhibited significantly reduced FBA activity in roots as well
as a reduced growth rate (Garagounis et al., 2017). In Ara-
bidopsis, AtFBA6 encodes a cytoplasmic localized protein.
e expression of AtFBA6 is positively regulated by sugar
and universally expressed, especially in the shoot apical
meristem (SAM), root apical meristem (RAM), and vascular
bundles (Fan, 2020). Overexpression of AtFBA6 resulted in
smaller plants with smaller, thinner leaves and advanced
floral bud differentiation (Lu, 2012). In addition, slower leaf
and root development was observed in Ata6 mutants (Fan,
2020). Similar phenotypes were observed in both mutant and

overexpression plants, likely due to functional redundancy
among FBA family members. AtFBA6 has been found to
interact with WUSCHEL (WUS), WUSCHEL-RELATED
HOMEOBOX 4 (WOX4), and WOX5, and positively regulate
the expression of WUS, WOX4, and WOX5. WUS, whose
expression is positively regulated byO2- (Schuster et al., 2014),
regulates and stabilizes SAM stem cells and is involved in flo-
ral meristem (FM) morphogenesis (Ikeda et al., 2009). ese
studies provided a very bright light that FBA participated in
plant morphogenesis.

Under salt stress, the unicellular green alga Dunaliella salina
can synthesize glycerol as an osmolyte. Dihydroxyacetone
phosphate, produced from a reaction catalyzed by FBA, is a
precursor of glycerol synthesis under salt stress, suggesting
that FBA may be stress-responsive and confer resistance to
stressors such as salt and extreme temperatures. Furthermore,
during glycolysis, aldolase activity can improve the produc-
tion of pyruvate, which is converted to α-ketoglutaric acid
in the tricarboxylic acid (TCA) cycle. α-ketoglutaric acid is
a precursor of the synthesis of proline, another osmolyte
that protects plant cells during stressful conditions (Zhang
et al., 2003). In 1997, a fructose 1,6-bisphosphate aldolase was
identified in a rice mutant, conferring increased production
of lysine and protein. However, the differences in enzymatic
activity were attributed to physiological adjustments rather
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than DNA modifications of the aldolase gene(s) (Schaeffer
et al., 1997).

Studies on C. oleifera suggest that FBA plays a vital role in
regulating secondary metabolism (Zeng et al., 2014). To date,
different isoforms of FBA have been found to exhibit tissue-
specific expression levels (Carrera et al., 2021), and evidence
is mounting that ctFBA/cFBAmay exert significantmetabolic
control in vivo. It is well known that the Calvin cycle pro-
vides intermediates for glycolysis or building blocks for cel-
lular components, thus playing an indispensable role in plant
growth and maintenance (Uematsu et al., 2012). In the past
decades, research into the rate-limiting steps of the Calvin
cycle has focused on genetic manipulation for the enhance-
ment of photosynthetic capacity and plant productivity. In
higher plants, aldolases are involved in photosynthetic car-
bon flux and the regulation of plant growth and stress assis-
tance. Heterologous expression of Arabidopsis plastid FBA
in tobacco resulted in increased plastic FBA activity, growth
rate, accumulation of aerial tissue biomass, CO2 fixation rate,
content of RuBP, photosynthetic rate, and starch accumula-
tion (Uematsu et al., 2012). However, it was unclear how the
increased aldolase activity could promote RuBP regeneration
or whether the mechanism involved the regulation of SBPase
or not. In 2017, research on tomatoes (Solanum lycopersicum)
indicated that plastid-localized aldolase activity regulated the
activities of enzymes involved in the Calvin cycle (Cai, 2017).
Further studies in tomatoes indicated that not only ctFBA but
also cFBA play pivotal roles in plant growth and tolerance to
low-temperature stress (Cai et al., 2016, 2018). In potatoes,
gene silencing techniqueswere utilized to reduce FBA activity,
resulting in a marked inhibition of photosynthetic CO2 fixa-
tion and growth (Haake et al., 1998). Later on, the interaction
of FBA6 and calmodulin-like proteins (CMLs) was verified in
alfalfa (Medicago sativa) (Yu et al., 2022). Ca2+ channel was
activated in plants when exposed to low-temperature condi-
tions, leading to a transient rise of free Ca2+ in the cytosol that
can be perceived by CML, a type of Ca2+ sensor (Ding et al.,
2019). CML10 in Medicago sativa (MsCML10) decodes the
cold-inducedCa2+ signal and regulates cold tolerance through
activatingMsFBA6, leading to increased accumulation of sug-
ars for osmoregulation. Not only in low-temperature stress
conditions but during water deficit, the protein abundance
level of FBA and the enzymatic activity increased when water
loss to 50% relative water content (Kamies et al., 2017). ese
results suggest that differentially localized FBAs may exhibit
different characteristics. In varies plants, FBA takes partici-
pant inmultiple abiotic stresses tolerance through varies path-
ways.

8. Function of FBA I in non-photosynthetic plant
tissues

FBAs derived from vascular plants belong to class I and
are homotetramers (Lal et al., 2005). While it has not yet
been established whether tissue-specific aldolase isozymes
occur in vascular plants, different types of FBAs have been
identified in photosynthetic and non-photosynthetic plant
tissues and are encoded by different nuclear genes which are
likely derived from a common ancestral gene, including the
cytosolic FBA (cFBA) and chloroplast/plastid FBA (ctFBA)
(Cai et al., 2016; Plaxton, 1996; Tsutsumi et al., 1994; Yamada
et al., 2000). e cytosolic aldolase has been found to contain

larger subunits than the chloroplast aldolase (Krüger, 1983),
and they are compartmentalized as isozymes and are involved
in different metabolic reactions. In many algae, only one
type of isozyme has been detected (Schnarrenberger et al.,
1994; Zhang et al., 2003). Different thermal stabilities, net
charges, amino acid compositions, immunological properties,
and subunit sizes have been observed between cFBA and
ctFBA. Some studies suggest that ctFBA contributes much
more to non-photosynthetic tissues than to photosynthetic
tissues, oen contributing more than 50% of the total FBA
activity (Botha&O’Kennedy, 1989;Hodgson&Plaxton, 1998;
Krüger & Schnarrenberger, 1985; Moorhead & Plaxton, 1990;
Nishimura & Beevers, 1981; Schwab et al., 2001).

e function of FBA in non-photosynthetic tissues has been
studied in germinating common beans (Phaseolus vulgaris),
Castor (Ricinus communis) seeds, carrot (Daucus carota)
roots, and germinating mung beans (Vigna radiata) (Botha &
O’Kennedy, 1989; Hodgson & Plaxton, 1998; Lal et al., 2005;
Moorhead & Plaxton, 1990). In germinating P. vulgaris seeds,
ctFBA, but not cFBA, was found to not bind to phospho-
cellulose, resulting in easy separation of ctFBA from cFBA
(Botha & O’Kennedy, 1989). A similar phenomenon was
observed in spinach leaves (Krüger, 1983). Purified FBA lost
only 25% of its activity when incubated for 5minutes at 65 °C,
suggesting that the enzyme is relatively heat-stable (Lal et al.,
2005). In germinating mung beans, as well as other plants,
cFBA activity appears to be heat stable (Botha & O’Kennedy,
1989; Hodgson & Plaxton, 1998; Moorhead & Plaxton, 1990;
Schwab et al., 2001). By contrast, ctFBA activity can be
completely inactivated by heat treatment, suggesting that
ctFBA is heat labile (Lebherz & Rutter, 1969; Schwab et al.,
2001). Different substrate specificities have been observed
in FBAs derived from different plants and plant tissues. In
germinating mung beans, cytosolic FBA plays a bifunctional
role in catalyzing the aldol cleavage of FBP and SBP, similarly
to cytosolic FBAs of other plants (Botha & O’Kennedy, 1989;
Hodgson & Plaxton, 1998; Lal et al., 2005; Lebherz & Rutter,
1969; Moorhead & Plaxton, 1990; Schnarrenberger & Krüger,
1986; Schwab et al., 2001). However, neither F1P nor F6P
could serve as the substrate for either mung bean cytosolic
FBA or carrot cytosolic FBA (Lal et al., 2005; Moorhead &
Plaxton, 1990). In other plants and plant tissues, including
pea (Pisum sativum), wheat (Triticum aestivum), corn leaf
(Zea mays), and castor (Ricinus communis), cytosolic FBA
exhibited activity at high concentrations of F1P (Hodgson &
Plaxton, 1998; Schnarrenberger & Krüger, 1986).

Research on FBA in vivo suggests that the enzyme exerts
metabolic control on photosynthetic CO2 fixation and growth
(Cai et al., 2018, 2022; Haake et al., 1998). Like the class
II FBAs isolated from pathogenic microorganisms, in car-
rot FBA I can physically interact with other glycolytic or
gluconeogenic enzymes, including cytosolic ATP- and PPi-
dependent phosphofructokinases, in vivo (Moorhead & Plax-
ton, 1992). In R. communis endosperm and mammalian
liver tissue, FBA I can interact with cytosolic FBPase during
gluconeogenesis (Moorhead et al., 1994; Pontremoli et al.,
1979). Furthermore, in Arabidopsis, FBA has been reported
to be physically associated with the cytosolic side of the
outer mitochondrial membrane (Giege et al., 2003). e in
vitro activity of FBA purified from both animals and plants
can be modulated by physiologically relevant concentrations
of various metabolite effectors (Akkerman, 1985; Botha &
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O’Kennedy, 1989; Hodgson & Plaxton, 1998; MacDonald &
Storey, 2002;Moorhead&Plaxton, 1990). It is well known that
FBA is one of the six enzymes whose activity is not regulated
by effectors or post-translational modification. rough
expressional regulation or protein degradation during the
Calvin cycle (Graciet et al., 2004), neither dithiothreitol, Pi,
P-enolpyruvate, 3-P-gluconate, citrate, glucose, glucose-1-
P, glucose-6-P, fructose, ribose, arabinose, adenosine, nor
sucrose (5 mM each), or fructose-2,6-P2 (50 μM), were
found to alter enzymatic activity. However, ribose-5-P, AMP,
ADP, and particularly ATP, were found to effectively inhibit
enzymatic activity (Lal et al., 2005).

9. Differences between FBA and FBA/P

Because many archaea lack a functional fructose 1,6-bisphos-
phate aldolase, it is not fully understood how gluconeogenesis
functions in these organisms. Recently, a novel bifunctional
FBP aldolase-phosphatase (FBA/P)was discovered, and could
be the ancestral gluconeogenic enzyme (Berg et al., 2010).
FBA/P is a bifunctional, thermostable enzyme encoded in the
genomes of virtually all archaea, as well as deeply branching
bacteria. Although this enzyme possesses both aldolase and
phosphatase activity, it has been found to be involved in glu-
coneogenesis, rather than in glycolysis. FBA/P exhibits higher
activity in the condensation reaction than in the FBP cleavage
reaction (Say & Fuchs, 2010). Bifunctional enzymes generally
consist of either two distinct catalytic domains or a single
domain exhibiting promiscuous substrate specificity (Moore,
2004). FBA/P can consecutively and dramatically change its
conformation to reorganize its active center and perform two
drastically different catalytic steps in a highly controlled and
ordered sequence. e archaeal fructose-1,6-bisphosphate
aldolase/phosphatase (FBA/P) consists of a single catalytic
domain but catalyzes two chemically distinct gluconeogenic
reactions, making it fundamentally different from ordinary
enzymes whose active sites are responsible for a specific reac-
tion. Although FBA/P appears to be physiologically unrelated
to any known aldolase (St-Jean et al., 2009), it exhibits an FBA
I-like mechanism involving a lysine Schiff-base with DHAP
(Grazi et al., 1962; Rose & Rieder, 1958). However, despite the
similarmechanism, the FBA/PKm for the aldol condensation
and cleavage differ by a factor of 1,000 (Say & Fuchs, 2010).

10. Conclusion and expectations

FBAs are widely distributed across many clades and are
essential for anabolism, catabolism, and process regulation.
In recent years, a considerable amount of research has been
conducted on the function of FBA in bacteria and fungi in
the hope of developing a therapeutic target against pathogen
infection. However, less research has been conducted on the
function of FBA in higher plants, including under normal and
stress conditions. To address this knowledge gap, we suggest
the following questions as potential topics of inquiry: (1)Does
FBA directly bind to other proteins or cell factors? (2) Does
FBA interact with any proteins other than WUS, WOX4,
and WOX5? (3) Does FBA interact with any downstream
response factors other than WUS, WOX4, and WOX5? (4)
What is the upstream regulator of FBA? (5) What roles do
the upstream regulators and downstream response factors
of FBA play in the abiotic stress response? (6) Does FBA

participate in the regulation of flower b ud differentiation 
in higher plants? Answering these questions and others will 
further our understanding of this interesting enzyme.
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