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Abstract
In the cold periods of Quaternary climatic fluctuations, many temperate species
underwent severe range contractions, and their survival during these periods was
associated with climatically more favorable regions, so-called glacial refugia, from
which subsequent range expansions took place. In this regard, the relative roles of
the Southern (“main”), Northern (i.e., cryptic northern), and Eastern European
(e.g., Colchis) refugia in shaping the evolutionary history of European temperate
plants should be evaluated. In this study, we investigated the phylogeographic
structure of Primula vulgaris, a European mesophilous species, by comparing
DNA sequences derived from the nuclear (nrITS) and the plastid (trnL-trnF and
rpl32-trnL) genomes of specimens covering the entire distribution range of the
species. The variability in flower morphology was also studied on an area-wide
scale with geometric morphometry. Our results clearly show the importance of
the northern and eastern refugia (the Carpathian Basin and Colchis) as sources
of genetic variation among European mesophilous plant species. Primula vulgaris
spread initially from the Colchis refugium westwards, and a proportion of the
colonists survived during the last glacial period in the Carpathian Basin, which
may have served as a secondary center of diversity from which all Europe was
subsequently populated.

Keywords
Caucasus; Carpathians; cryptic northern refugium; nrITS; pDNA; temperate plant
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1. Introduction

In the cold periods of Quaternary climatic fluctuations, many temperate species
underwent severe contractions in distribution range, and their survival during
these periods was associated with climatically more favorable regions, so-called
glacial refugia, from which subsequent range expansions took place (Hewitt, 2004).
These refugia played a crucial role in shaping the current genetic variation among
present-day biota (Taberlet et al., 1998). In Europe, the role of the main southern
peninsulas (Iberian, Apennine, and Balkan) as such refugia, as well as sources of
genetic variation, is well established (Hewitt, 1996, 2004; Taberlet et al., 1998).
A similar role for the eastern-most refugia (i.e., the Western Caucasus, Southern
Urals, and Altai) as postglacial sources of European flora was postulated more
than a century ago based on “florogenetic reconstructions” (Kamelin et al., 1999;
Korzhinskiĭ, 1899). Nevertheless, there have been comparatively few studies that
have assessed the role of these eastern regions in shaping the evolutionary history
of European plants using modern approaches. Most of the studies that have been
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conducted have tended to focus on cold-resistant arboreal species (e.g., Palme et
al., 2003; Pyhäjärvi et al., 2008; Tollefsrud et al., 2009; Volkova et al., 2020), although
some studies have examined temperate species (e.g., Jia et al., 2012; Manafzadeh et
al., 2014; Treier & Müller-Schärer, 2011). The findings of a majority of these studies
support the general pattern of a westward postglacial migration of the studied plants.
Paleobotanical data and past climate reconstructions have indicated the particular
importance of the Ponto–Caspian region as a refugial area for temperate plant
species with the main refugium, the Colchis region, located along the northeastern
shores of the Black Sea (Tarkhnishvili et al., 2012). Colchis was recently proposed to
be a “repository of unique genotypes and a refuge of unique tree species” (Grimm &
Denk, 2014), although the potential importance of this refugium as an independent
source of genetic variation had already been postulated (Hewitt, 2000; Taberlet et
al., 1998). To date, however, we still lack continental-scale phylogeographic studies,
including a sufficient number of both Caucasian and European samples, to establish
the role of the Colchis region in shaping the modern flora of Europe.
Moreover, it seems probable that the southern and eastern refugia were not the only
climatic refuges, as growing evidence supports the existence of “cryptic northern
refugia,” wherein temperate plants could survive during glaciations at higher
latitudes (Provan & Bennett, 2008; Stewart & Lister, 2001). These refugia may have
been located at relatively high latitudes in Western and Central Europe (Magri et
al., 2006; Michl et al., 2010; Valtueña et al., 2012) or Asia (Volkova et al., 2020),
although their exact locations and borders have yet to be definitively established.
For example, the Carpathians have been proposed as a refugium territory in the
phylogeographic studies of certain species sampled at the European level (Daneck
et al., 2011; Kramp et al., 2009; Mosolygó-Lukács et al., 2016; Slovák et al., 2012),
although insufficient sampling in the Caucasus has thus far precluded a complete
understanding of the relative roles of all refugia. To date, only the study conducted
by Bartha et al. (2015) has compared the genetic variability of European and
Caucasian populations, in which the authors uncovered a group of haplotypes
of Erythronium dens-canis L. characteristic of the eastern Carpathian Basin that
were nearly equidistant from the other two groups of haplotypes characterizing the
Caucasian sister-species (Erythronium caucasicum Woronow) and samples from the
remainder of the European area. These findings accordingly serve to highlight the
role of the Carpathian region in the long-term isolation and survival of temperate
mesophilous species in Europe.
Thus, the relative roles of the Southern (“main”), Northern (i.e., cryptic northern),
and Eastern European (e.g., the Colchis) refugia in shaping the evolutionary
history of European temperate plants should be evaluated. In the present study,
we used Primula vulgaris Huds. (Primulaceae) as a model species to examine the
different roles played by European refugia in shaping the phylogeographic history
of temperate broad-leaved forest plants. This model species is suitable for our study
purposes as it is distributed throughout Europe (Figure 1), and is a characteristic
plant of broad-leaved (mostly Carpinus and Fagus) forest habitats or their clearings
under the influence of a sub-Atlantic climate. Primula vulgaris is characterized by
entomophilous pollination and myrmecochorous seed dispersal and has a transient
seed bank (Jacquemyn et al., 2009), traits that tend to indicate the limited dispersal
capabilities of this plant, which in turn are conducive to long-term preservation of
the phylogeographic structure. Members of our group have previously revealed
the high genetic diversity of P. vulgaris in the Colchis region and its spread from
this refugium westwards to the Caucasus along the northern coast of the Black Sea
(Volkova et al., 2013). However, the extent to which Caucasian P. vulgaris spread
further in the past has yet to be conclusively established, given that our sampling in
this study was limited to the Ponto-Caspian region.
In the current study, we sought to address the following questions: (i) Is there any
evidence of glacial survival of the temperate herb Primula vulgaris in Northern
and/or Southern European refugia? (ii) What was the role of the Eastern Colchis
refugium in shaping the evolutionary history of P. vulgaris in Europe?
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2. Material andMethods

2.1. Sampling of Plant Material

For the purposes of the present study, we augmented the samples of P. vulgaris
previously collected from 57 populations distributed along the northeastern coast
of the Black Sea and other parts of the Ponto-Caspian region and Central Russia
(Volkova et al., 2013), with samples from a further 103 populations (160 in total),
collected from across the entire European distribution of this species (Figure 1,
Table S1). The additional sampling was conducted with a particular emphasis
on the western part of Europe. We adopted a broad species concept to delimit P.
vulgaris in a taxonomic sense, based on the findings of the more focused analyses by
Volkova et al. (2013), who revealed that forms previously recognized as separate taxa
should not be treated as such. The additional populations were sampled between
2005 and 2017 in the field. Our preliminary tests using populations representing
three different parts of the distribution range [the northeastern coast of the Black
Sea: Populations 703, 704, 705, 711, 707, 716 (see Volkova et al., 2013, Table 1),
four specimens from Population 804, eight specimens from Population 829; three
specimens from Western Hungary: Csöde (population code: Hu121); and three
specimens from France: Chailland (population code: PrAChail)] revealed no
intrapopulation variability in the selected DNA regions (Table S1). Given the highly
limited intrapopulation variability of these DNA-regions in the studied populations,
we followed the advice of Lowe et al. (2004) by sampling more populations at the
expense of sampling more specimens per population, and reduced the sampling
to one plant per population. Leaf samples collected from all plants were dried in
silica gel or stored in ethanol at 4 ◦C prior to DNA extraction, and one plant per
population was pressed as a voucher specimen. These voucher specimens have been
deposited in the Herbarium of Moscow State University (MW; Seregin, 2020) and
the Herbarium of Debrecen University (DE).
For the purposes of morphometric analyses, we sampled 21 populations,
representing four different regions of the distribution range (Table S2). A single lobe
was cut from the corolla of 12–25 plants in each population and mounted on a paper
sheet using transparent adhesive tape in the field. Wherever possible, samples were
collected from plants growing at a distance of at least 10 m from any other sampled
plant. Samples for morphometric analysis collected from the Hyrcanian region,
which were obtained from sites 25 km apart (Populations 867 and 868), were mixed
to a give a single population sample for the purposes of statistical analysis, owing to
the small sample size.

2.2. DNA-Work and Data Analyses

DNA was extracted from desiccated leaf material using a modified CTAB method
(Doyle & Doyle, 1987) as described by Sramkó et al. (2014). We used the same DNA
regions used by Volkova et al. (2013), namely, the rpl32-trnL plastid spacer region
(Shaw et al., 2007), the trnL-trnF plastid spacer region (Taberlet et al., 1991), and the
complete nuclear ribosomal ITS (nrITS) region (Wen & Zimmer, 1996). To enhance
resolution, we used the whole trnL-trnF region (trnL intron plus trnL-trnF spacer)
instead of the spacer region only, as described by Volkova et al. (2013). PCR and
sequencing were performed as described by Volkova et al. (2013).
Raw sequences and electropherograms were checked by eye for possible errors,
after which the DNA sequences were manually aligned using BioEdit v.7.0.5.3
(Hall, 1999). The sequences of the two plastid DNA (pDNA) regions were combined
into a single data matrix (“plastid dataset”) and the gaps were coded using the
modified complex algorithm implemented in SeqState v.1.4.1 (Müller, 2005). In
instances where DNA sequences differ with respect to only a few substitutions (as in
our case, see the Results section), conventional phylogenetic methods may perform
poorly (Crandall, 1996), and consequently, we carried out statistical parsimony
analysis using the network algorithm described by Templeton et al. (1992) and
implemented in the software TCS v.1.21 (Clement et al., 2000), which estimates
unrooted haplotype networks with a 95% parsimony probability. We included
Primula veris L. as an outgroup in the statistical parsimony analysis (it was shown
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Figure 1 Geographical localities of the Primula vulgaris populations sampled in this study. The distribution range of P. vulgaris is
indicated by gray shading on the map, which is drawn after Meusel et al. (1965). The black dots represent individual populations
sampled for the genetic study. Population numbers correspond to Table S1.

to be one of the closest sister species to P. vulgaris in previous phylogenetic studies:
Mast et al., 2001; Schmidt-Lebuhn et al., 2012). In the same studies, two further
closely related species, P. megaseifolia Boiss. and P. juliae Kusn. were shown to
be poorly genetically differentiated from P. vulgaris and probably paraphyletic,
and were thus deemed unsuitable as outgroups in the present study. The online
tool tcsBU (Santos et al., 2016) was used to visualize the haplotype and ribotype
networks.
We also obtained sequences for herbarium samples (MW, MHA) of several Primula
species from different sections, along with those from Cortusa matthioli L. and
Hottonia palustris L. (Table S1), to verify our rooting with P. veris using multiple
outgroups (following the phylogeny of the genus Primula described by Mast et
al., 2001). Maximum likelihood analysis and tree building for the multiple outgroup
(Figure S1) were performed with R 3.6.1 (R Core Team, 2019), using the packages
Ape and Phangorn. Bootstrap values were estimated based on 1,000 bootstrap
samples.
The sequences used in this study have been deposited in the GenBank database
(MN826841–MN826918, MN854206–MN854330, MN865595–MN865671,
MT137889–MT137895, MT155820–MT155829, MT155830–MT155839).

2.3. Morphometric Data Collection and Analyses

Morphometric analyses were based on the work of Yoshioka et al. (2004, 2007), who,
by analyzing the outline shapes of Primula sieboldii E. Morren corolla lobes, were
able to distinguish between both commercial varieties and natural geographical
populations of this species. In the present study, we adopted this approach to
characterize morphological differences between geographical groups of the studied
populations.
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Field-fixed lobes were scanned at high resolution using a Fujitsu Scansnap SV600
scanner (Fujitsu, Tokyo, Japan). The scanned images were used to record the
shapes of petal outlines using tpsDig v.2.10 (Rohlf, 2006). Different numbers of
landmarks, according to the size of the lobe, that accurately described the shape
at high resolution, were placed manually on the corolla lobe outlines by the same
person. Using the resampling function of tpsDig, a hundred landmarks were
resampled on the outlines and placed equidistantly. Hangle–Fourier transformation
(Haines & Crampton, 2000) and linear discriminant analysis (LDA) were performed
using PAST v.2.17c (Hammer et al., 2001). The LDA results were based on the first
14 Hangle–Fourier coefficients, which described more than 99% of the variability
of corolla lobe shapes. The statistical significance of morphometric separation
was assessed by one-way pair-wise multivariate analysis of variance (MANOVA)
using sequential Bonferroni significance in PAST. Using the morphometric dataset
obtained, we performed three LDA analyses. The first two were run in PAST, in the
first of which we defined all populations as separate groups, whereas the second
analysis was run by defining four geographical regions recovered by the phylogenetic
analysis as an a priori classification. Given that we wanted to show the mean
shape of each population and their centroids, we thus ran a third LDA on corolla
lobe shapes, in which each sampling site (i.e., population) was used as an a priori
classification using the R package MASS (Venables & Ripley, 2002), with mean shape
calculations being performed using the R package “geomorph” (Adams & Otárola-
Castillo, 2013). For the purposes of this final LDA, we grouped the centroids of each
population by convex hulls based on geographical regions with unique ribotype and
haplotype combinations.

3. Results

3.1. TCS Reconstruction Based on cpDNA Sequences

The concatenated trnL-trnF and rpl32-trnL matrix consisted of 1,370 aligned
positions, 49 of which were polymorphic and 25 parsimony informative. Our
analysis revealed 58 haplotypes, two of which belonged to the outgroup species P.
veris (Figure 2A, Table S1). The reconstructed haplotype network, with a calculated
95% parsimony maximum connection limit at 16 steps, was structured into five
haplogroups, which were arranged consecutively, separated by several (at least three)
mutational steps, and showed a strong geographical pattern (Figure 3A). The first
haplogroup (I) comprised the two haplotypes (v1, v2) of P. veris. Haplotypes in
the second haplogroup (II) were associated with populations located in the Colchis
region and the Central and Eastern Caucasus mountains. The third haplogroup (III)
was characterized by a considerably more complex structure with closed loops, and
plants with haplotypes in this group were confined to the northeastern coast of the
Black Sea. The fourth haplogroup (IV) appeared to have a star-shaped structure of
haplotype relationships and was represented in plants that are widely distributed in
Europe. The internal Haplotype 27 was widespread in Central and Southern Europe,
and numerous haplotypes derived from Haplotype 27 could be found in the western
and southern regions of Europe. Haplotypes 28–31 appeared to form a separate
lineage distributed in Western Russia and the Crimea. Similarly, Haplotypes 42–49
formed a separate lineage distributed primarily in Western Europe, with exceptions
being two locations in Southern Croatia and the Eastern Carpathians. Haplogroup
V consisted of two haplotypes separated from Haplogroup IV by eight mutational
steps and was confined to the Hyrcanian forest region. The network topology was
congruent with the maximum likelihood tree, supporting the position of P. veris as
the closest outgroup species, and indicating that Haplotype 1 diverged first in the
ingroup (Figure S1).

3.2. Statistical Parsimony Analysis Based on nrITS Sequences

The nrITS matrix consisted of 647 aligned positions, 47 of which were variable and
29 parsimony informative. We were, however, unable to detect any evidence of
nrITS paralogy (Álvarez & Wendel, 2003; Nieto-Feliner & Rosselló, 2007) in the
direct sequence reads. Ambiguous sites appeared only at the beginning and end of
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Figure 2 Haplotype and ribotype networks reconstructed based on the combined plastid
DNA dataset (A) and nrITS (B) with a 95% maximum connection limit in Primula
vulgaris s. l. and the outgroup. The size of each circle is proportional to the frequency of
the haplotype or ribotype in our datasets. Small unlabeled circles represent hypothetical
haplotypes and ribotypes that were not sampled. The main groups of haplotypes (A) are
denoted by Roman numerals (see Table S1).
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Figure 3 Spatial distribution of the identified haplotypes (A) and ribotypes (B). The color of the circles corresponds to that of the
haplotypes and ribotypes shown in Figure 2. Empty circles represent samples that are missing from the plastid (A) or nrITS (B)
dataset. The distribution range of Primula vulgaris is indicated by gray shading on the map.
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the sequence reads and were trimmed off. The reconstructed ribotype TCS-network,
with a calculated 95% parsimony maximum connection limit at 11 steps, connected
all the ingroup samples into a single network (not shown). Manual increase of the
connection limit to 13 steps facilitated integration of the outgroup species P. veris
into the network (Figure 2B). Our analysis revealed 30 ribotypes, one of which
(Z) belonged to P. veris, represented by two samples (Figure 2B, Table S1), and
was connected to the D ribotype of the network. On the near star-like network of
the ingroup, the majority of the ribotypes were connected directly to the “central”
Ribotype D, which was confined to the Carpathians, Colchis, and the Eastern
Caucasus (Figure 3B). Several ribotypes were derived from Ribotype D (Figure 2B).
One ribotype group (comprising Ribotypes A, B, C, M, and N) was characteristic to
the northeastern coast of the Black Sea, whereas another lineage (K, J, L) was found
to be associated with Eastern Turkey. A third group, with a widespread internal
Ribotype F, was common throughout the entire Europe distribution range, and
several ribotypes (b, f, y, X, Y, U, W) closely related to Ribotype F were detected in
some populations sampled in the Apennines and the Balkans. A fourth group was
characteristic of the Ponto-Caspian region and the Eastern Caucasus (Azerbaijan:
G, western Turkey: I, the Crimea and western Turkey: H) with Ribotype V being
detected in a single Italian population. Additional satellite ribotypes of the central
Ribotype D were scattered throughout most of the species’ distribution range:
Ribotype R from the Western Carpathians was connected to an Iberian Ribotype S;
Ribotype T was found in northwestern Turkey, Ribotype Q was from the Eastern
Alps, Ribotype P was from Sicily, Ribotype O was from the Eastern Carpathians, and
Ribotype E was from the Central Caucasus and the eastern coast of the Black Sea.
Further, we detected two geographically outlying single occurrences represented by
Ribotype H from France and Ribotype A from Bulgaria. The network topology was
congruent with the maximum likelihood tree, supporting the position of P. veris
as the closest outgroup species, and indicating that Ribotype D diverged first in the
ingroup (Figure S1).

3.3. Morphometric Analysis

Analysis of the morphometric variation in petal shape revealed differences among
all geographical regions with a uniformly high significance (p < 0.001), despite our
detection of only minute differences in the mean shape of petals (Figure 4). Data
clouds revealed by LDA were found to be overlapping in both analyses (only regional
grouping is shown in Figure 4A). However, if sequential Bonferroni corrected
significance levels were used in MANOVA, with a few exceptions, we were able to
distinguish between populations that were collected from different geographical
regions (Table S2). We found that Lca (Western Europe) and Kra (Caucasus) do
not differ significantly from any other populations, whereas Mal (Western Europe),
which bears Ribotype H that is characteristic of Crimean and northwestern Turkish
populations (Figure 3B), differed only from Dzh (Caucasus). Furthermore, we found
that populations from the Hyrcanian region (Hyr) differed significantly from most
of the populations in the Carpathian Basin, but not from the Caucasian or Western
European populations. However, we failed to observe any marked morphometric
differentiation within regions (Table S3).
When grouping the populations according to their geographical origin, we were able
to distinguish between all groups with high significance (Table S2). Using LDA, we
identified the group centroids of each population (Figure 4B). Convex hulls drawn
around each population centroid according to their geographical origin defined
four nonoverlapping units. The Caucasian and Carpathian Basin samples form
two somewhat distinct groups separated along the first axis. Notably, we observed
a relatively higher regional diversity among Western European populations, which
collectively form a third group of centroids, located between the two aforementioned
groups. Considering only the relative distances between these three groups, the
Hyrcanian region appears to be distinct from all three (Figure 4B). Although this
region is underrepresented in our dataset, it is noteworthy that the Hyrcanian forest
population appears to be closer to some Western European populations (Cha and
Bro) than to those in either the Carpathian or Caucasian group.
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Figure 4 Scatterplots of grouped geographical regions revealed by linear discriminant
analysis (LDA) implemented in PAST (A) and population group centroids identified by
LDA (B) with convex hulls drawn based on the geographical regions of origin. Color
codes correspond to geographical regions as follows: brown – Caucasian region; red
– Carpathian region; green – Western Europe; blue – Hyrcanian region. Calculated
population mean shapes are depicted next to the group centroids. Please refer to Table S2
for descriptions of the identification codes.

4. Discussion

Our results clearly indicate the importance of previously neglected northern and
eastern refugia (the Carpathian and Colchis regions) as sources of genetic variability
among European populations of mesophilous plant species. As discussed further
below, P. vulgaris appears to have initially spread westwards from the Colchis
refugium, and subsequently during periods of glaciation, a proportion of the
colonists survived in the Carpathian Basin, which served as a secondary center of
diversity from which the entire European region was populated.

4.1. Genetic Variation in Primula vulgaris and Closely Related Taxa

The haplotype distribution of maternally inherited single-copy cpDNA and
ribotypes of biparentally inherited multi-copy ITS are not perfectly congruent,
which can be explained in terms of the peculiarities of these different marker
types. For example, we identified two occurrences of geographically outlying single
ribotypes, namely, Ribotype H in France and Ribotype A in Bulgaria, derived
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from plants sampled near settlements where various Primula plants are often
kept in gardens for ornamental purposes. In most such cases, the exact origin of
horticultural plants is unknown, and thus we cannot exclude the role of garden
plants as putative pollen donors for plants from neighboring natural primrose
populations, thereby giving rise to hybrids characterized by local haplotypes
combined with outlying ribotypes. Thus, only simultaneous analyses of both
datasets, taking into account their drawbacks and (to some extent) the results
of morphological analysis, could provide us with a full picture of the species
phylogeography.
Plants from the Hyrcanian region were found to be genetically highly divergent
(particularly with respect to their plastid sequences), show discrete morphological
differences (the abaxial surface of leaves is whitish and hairy), and have a distinct
distribution range (Iran and Azerbaijan), and accordingly should be treated as a
separate species, Primula heterochroma Stapf, rather than a subspecies of P. vulgaris
[P. vulgaris subsp. heterochroma (Stapf) Smith et Forrest: Richards, 2003]. The
origin of P. heterochroma is assumed to be associated with refugia in the South
Caspian Basin (cf. Christe et al., 2014; Tarkhnishvili et al., 2012).

4.2. The History of Primula vulgaris: Glacial Survival and Migrations in Europe

Ribotype D and Haplotype 1, detected in P. vulgaris populations distributed
in Colchis, are connected to the outgroup and accordingly should be treated as
ancestral. Populations with haplotypes from the root Haplogroup II and the root
Ribotype D and its close derivative E are also found in Colchis and the Central and
Eastern Caucasus (Figure 3). Thus, the Colchis region and adjacent areas of the
Ponto-Caspian region are assumed to be the main refugia where mesophilous P.
vulgaris could have survived during multiple Quaternary glaciations, including the
most severe glacial periods (Svendsen et al., 2004). These findings are consistent
with those of earlier studies, which have highlighted the role of the Colchis region
as an “archive of ancient plant lineages” (Grimm & Denk, 2014; see also Bartha et
al., 2015; Tarkhnishvili et al., 2012; Volkova et al., 2020).
From the Colchis refugium, P. vulgaris subsequently spread westwards along the
northwestern coast of the Black Sea, as proposed earlier and discussed in detail
by Volkova et al. (2013). This expansion is indicated by the distribution of the
lineage of ribotypes (A, B, C, N, M) and Haplogroup III. The complex structure of
the latter tends to indicate long-term in-situ glacial survival, in accordance with
the past climate reconstructions (Svendsen et al., 2004; Tarkhnishvili et al., 2012).
Similarly, as can be deduced from the distributions of Ribotypes K, L, and J, western
Turkey was also colonized by P. vulgaris originating from Colchis (Volkova et
al., 2013), although given the lack of cpDNA sequences from these populations, we
are currently unable to conclusively establish this colonization route.
Primula vulgaris originating from the northeastern Black Sea coast further colonized
the Carpathian Basin during interglacial periods when the improved climatic
conditions became conducive to such colonization. This colonization event is
evidenced by the distribution of the Central Haplotype 27 derived from Haplogroup
IV and the root Ribotype D, possibly existing there due to a shared ancestral
polymorphism.
We thus confirmed our earlier hypothesis, based on geographically limited sampling
(Volkova et al., 2013), that the Colchis region is not only an important repository
of genetic variability (Grimm & Denk, 2014) but also its source for European
populations. Although this has been previously postulated based on florogenetic
reconstructions (Kamelin et al., 1999 and references therein) and hypothesized in
early comparative phylogeographic studies (Hewitt, 2000; Taberlet et al., 1998), it is
only in the present study that this has been definitely demonstrated.
We also propose that the Carpathian Basin has served as an independent glacial
refugium for P. vulgaris [at least during the last glacial maximum (LGM)], as
is evident from the high genetic divergence of the Carpathian Basin plastid
sequences from populations distributed along the northeastern coast of the Black
Sea. These findings are consistent with earlier assumptions that the Carpathian
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Basin constituted a refugium for temperate plants, based on genetic studies (e.g.,
Bartha et al., 2015; Gömöry et al., 2003; Magri et al., 2006; Trewick et al., 2002) and
recent paleobotanical reconstructions (Feurdean et al., 2007). Moreover, we have
previously predicted the importance of the northern cryptic refugia for P. vulgaris
(Volkova et al., 2013), as this mesophilous species can survive in harsh alpine
habitats, and its distribution tends to be limited to a greater extent by humidity than
by temperature (Jacquemyn et al., 2009).
It is indeed conceivable that most of the European populations of P. vulgaris
originate from a postglacial expansion of refuge populations surviving in the
Carpathian Basin. As is evident from the distribution of haplotypes and ribotypes, P.
vulgaris spread from the Carpathian Basin to Western Europe. We also hypothesize
that the Apenine and Iberian peninsulas may have been colonized from the
Carpathian Basin, although this contradicts the traditional view on plant migrations
in Europe (Hewitt, 2000; Taberlet et al., 1998) and is not supported even by
studies that have revealed the refugial role of the Carpathian Basin (e.g., Bartha et
al., 2015; Gömöry et al., 2003; Magri et al., 2006; Provan & Bennett, 2008; Trewick
et al., 2002). This pattern could be explained by the dry climate of the southern
peninsulas during the LGM (Markova & Kolfschoten, 2008) that was unsuitable for
P. vulgaris (Jacquemyn et al., 2009). Furthermore, we found that the geographical
distribution of ribotypes in Italy and the Balkans does not perfectly match their
phylogenetic relationships, which could reflect the complex evolutionary history
of this marker type as well as population extinctions. Carpathian P. vulgaris may
also have colonized the western part of the Black Sea coast (the Crimea and western
Turkey). In this regard, the observed genetic variability in these two regions (distinct
haplotypes in the Crimea and different ribotypes in western Turkey) indicates
that this colonization may have occurred prior to the LGM, and that P. vulgaris
may have survived through periods of glaciation in Western Anatolia (a refugium
reconstructed by Tarkhnishvili et al., 2012) and in the Crimea (a refugium on its
southeast coast was described in Markova & Kolfschoten, 2008). Furthermore, one
of the P. vulgaris populations in Central Russia (with Haplotype 41, derived from
the Central European Haplotype 27) may also be of Carpathian origin, whereas the
origin of a second population (characterized by Haplotype 28, which is linked with
the Crimean Haplotypes 29–31) could be associated with a refugium that existed in
the central part of the Dnepr valley (Markova & Kolfschoten, 2008).

5. Concluding Remarks

In an overwhelming number of phylogeographical studies of European species
the eastern part of the area has been insufficiently sampled. It is well known that
only area-wide phylogeographic analyses could well reveal cryptic assemblages of
genetically distinct taxa, which are probably in need of protection (Van Rossum
et al., 2018). Indeed, in this study we identified genetic differentiation among
populations of P. vulgaris originating from the Hyrcanian, Colchis, and Carpathians
regions, which indicates that Hyrcanian plants should be treated as a separate
species, namely, P. heterochroma. A comparable genetic split between Carpathian
and Caucasian populations has been revealed for two closely related species
(Erythronium dens-canis and E. caucasicum) with ecological preferences similar to
those of P. vulgaris (Bartha et al., 2015).
Thus, the relative roles of the southern (“main”), northern (i.e., cryptic northern)
and eastern (e.g., Colchis) refugia in shaping the evolutionary histories of European
temperate plants need to be further evaluated in continental-scale phylogeographic
studies of species with different ecological preferences. Such investigations could
make a valuable contribution to determining appropriate conservation strategies.

6. SupportingMaterial

The following supporting material is available for this article:

• Figure S1. The maximum likelihood trees for the observed haplotypes and
ribotypes and the multiple outgroup.

• Table S1. Samples for molecular phylogenetic analyses included in this study.
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• Table S2. Population samples of Primula vulgaris for morphometric analyses and
the difference between four geographic groups of these samples.

• Table S3. Significance level of morphometric differentiation between each two
population pairs.
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