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Abstract

Recent advances in precision agriculture highlight the crucial role of machine learn-
ing in predicting crop yields by discerning intricate patterns in agro-meteorological
data. However, its adoption in the oil palm industry in Thailand remains limited.
This study aimed to compare machine learning algorithms for predicting the oil
content from different parts of both ripe and raw oil palm fruits (top, middle,
and down). Additionally, we compared algorithms for predicting oil volume in
semi-ripe and unripe fruits. Among the methods used, Random Forest and Gra-
dient Boosting models mostly excelled in predicting the oil content at different
positions on the oil palm fruit. In contrast, Decision Trees and XGBoost were
the most accurate predictors of oil volume for semi-ripe and unripe oil palm
fruits, respectively. Overall, this research emphasizes the potential of machine
learning to enhance oil palm industry practices and optimize agricultural strategies
in Thailand.

Keywords
fruit ripeness; machine learning; moisture content; oil palm industry; precision
agriculture; supervised learning

1. Introduction

The Elaeis guineensis Jacq., more widely known as the oil palm, is a single, unbranched
tree that demands multiple years of dedication and hard work before it yields fresh
fruit bunches with high oil content (Uning et al., 2020). Around one-third of global
vegetable oil originates from this tree, surpassing the oil yield from soybean and
rapeseed (Morcillo et al., 2013). Oil palm fruit offers two primary types of vegetable
oil: crude palm oil from the fruit's mesocarp and palm kernel oil from its seeds. In
optimal conditions, industrial oil palms generally yield between 12 and 18 tons of
fruit annually per hectare. Notably, oil palms are unique permanent plants, deviating
from the norm of annual, biennial, and perennial crops. Harvesting occurs bi-monthly
throughout the plant’s life, barring the early growth phase (Ismail & Mamat, 2002;
Legros et al., 2009). Yields are relatively stable, albeit seasonal factors (Jelsma et al.,
2019) and such issues as inadequate fertilization, pest infestation, and disease can
affect them. Effective field management, disease control, and optimal harvesting pat-
terns bolster yield quality and quantity. However, several factors can still reduce the
overall yield (Gérard et al., 2017). Given these challenges, there is an increasing need
for more precise cultivation techniques, where machine learning and data-driven
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technologies can play a crucial role in optimizing field management and improving
yield efficiency (Xia et al., 2024).

Thailand considers oil palm a pivotal economic crop due to its remarkable yield rate
compared to other oil crops. In 2016, the nation dedicated 729,600 hectares to oil palm
cultivation, which has been on an upward trajectory (Suppalakpanya et al., 2019). By
2020, Thailand’s oil palm plantation area spanned over 9,954.27 km?, trailing only
Indonesia and Malaysia globally. The majority of this area, approximately 8,500 km?,
is situated in southern peninsular Thailand. Krabi boasts the largest plantation stretch
in this region, whereas Ranong is renowned for its impressive yield per unit area
(Worachairungreung et al., 2023). However, Thailand’s oil palm industry faces chal-
lenges, and one of these challenges is the presence of over 200,000 small-scale growers.
Additionally, associated production costs and logistical complexities further impact
the industry. In contrast to key producers like Indonesia and Malaysia, which utilize
vast transportation networks, Thai farmers predominantly employ smaller vehicles.
Furthermore, sector-specific expertise is needed to boost the optimal amount of
oil production. Thai oil palm cultivators face the pressing challenge of harvesting
their crops prematurely, which diminishes oil content and reduces potential profits
(Raksaseri, 2023; Treerutkuarkul, 2021). Machine learning can play an essential role
in addressing the challenges of premature harvesting in Thailand’s oil palm industry
by predicting optimal harvesting times. Accurate prediction of when to harvest allows
farmers to maximize oil content in the fruit, directly improving yields and increas-
ing profitability. Given Thailand’s reliance on small-scale growers and the logistical
hurdles they face, adopting machine learning can streamline operations by providing
data-driven insights on when to harvest, helping farmers avoid premature harvesting,
which significantly lowers oil content.

With the advent of machine learning, precision agriculture is experiencing revolu-
tionary advancements. These recent advancements have demonstrated the signifi-
cance of machine learning in predicting crop yields by identifying linear and nonlin-
ear patterns within intricate agro-meteorological data. Oil palm cultivation, striving
to adhere to global sustainability benchmarks, also incorporates these innovations
(Behmann et al., 2015; Chlingaryan et al., 2018; Dimitriadis & Goumopoulos, 2008;
Rahman et al.,, 2018). Tasks like soil and crop management, crop selection, yield
predictions, and more are evolving through machine learning. Despite this capability,
the utilization of machine learning techniques for predictive analysis remains limited
within the oil palm industry, particularly in Thailand. A systematic review by Khan
etal. (2021) identified an imbalance in the focus of oil palm research, with 84% of stud-
ies using classification techniques and only a small proportion exploring regression
methods for predictive analysis. The geographical distribution of the analyzed articles
revealed that the top six countries involved in oil palm research were Malaysia, with
38 articles, followed by Indonesia, the UK, the USA, Australia, China, and Thailand,
with 11, 8, 5, 4, and 4 articles, respectively. Based on the geographical distribution
of studies, Thailand is significantly underrepresented compared to key players like
Malaysia, further highlighting a gap in research specific to the Thai oil palm industry.
The limited adoption of regression-based approaches for oil palm predictions has lefta
crucial gap in developing precision agriculture solutions for this crop. Hence, adopting
automation and precision approaches through machine learning in this domain is
imperative, especially in Thailand, as the integration of machine learning techniques
can assist in guiding farmers on the best harvesting times to optimize oil yields.
Such guidance can augment oil quality, aligning it with countries like Malaysia and
Indonesia, which are considered premium producers.

This study aimed to compare machine learning algorithms for predicting the oil con-
tent from different parts of both ripe and raw oil palm fruits (top, middle, and down).
Additionally, we compared algorithms for predicting oil volume in semi-ripe and
unripe fruits. The findings have the potential to provide critical insights to farmers,
enabling more informed decisions about harvesting times, thus improving oil quality
and stabilizing supply-demand relationships. This research not only contributes to
the growing body of work in precision agriculture but also underscores the need for
Thailand to catch up with global leaders in oil palm cultivation by leveraging the full
potential of machine learning.
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2. Materials and methods

Machine learning is becoming increasingly pervasive, impacting human society and
the natural world, including agriculture (Dahal et al., 2021; Gonzalez-Rivero et al.,
2020). These algorithms enable data-based decision-making and predictions. Predict-
ing agricultural outcomes, such as crop yields, can significantly affect food security
and livelihoods.

Machine learning algorithms are typically categorized into three main types based on
their learning feedback (Murphy, 2018; Verbraeken et al., 2020): supervised, unsu-
pervised, and reinforcement learning. Our study focused on supervised learning,
which predicts outcomes based on labeled data. Moreover, this approach has several
algorithms that can be used to build the predictive model. Thus, to predict agricul-
tural outcomes, this study selected seven popular algorithms based on different con-
structions to fit the model, namely Linear Regression, Decision Trees, Support Vector
Regression, Random Forest, Gradient Boosting, Extra Gradient Boosting Machine, and
Light Gradient Boosting Machine.

2.1. Linear regression

Simple linear regression involves predicting a dependent variable using a single inde-
pendent variable, known as univariate regression analysis. In simple linear regres-
sion, the dependent and independent variables are differentiated to determine the
relationship between the two variables. This relationship is similar to correlation, but
unlike correlation, simple linear regression distinguishes between the dependent and
independent variables.

2.2. Decision Trees

Decision Trees (DT) are a non-parametric and simple structure classification algo-
rithm for capturing nonlinear relationships between features and classes (Fried]l &
Brodley, 1997). They are represented as a tree-based hierarchy of rules and functions
by recursively partitioning or splitting the input data into smaller subsets (Friedl &
Brodley, 1997; Song & Ying, 2015). This splitting process is guided by thresholds
defined at each internal node in the tree. Starting from the root node in the DT, the
input data are successively divided into sub-nodes and further sub-nodes (Sharma
etal., 2013; Song & Ying, 2015). Ultimately, the input data are classified based on this
binary subdivision, with the final nodes, called leaf nodes or leaves, representing the
target classes (Maxwell et al., 2018; Pal & Mather, 2003). Despite their effectiveness,
DTs have limitations. They may not always produce optimal solutions, as they rely
on a single tree. Overfitting is also a common issue with DTs, requiring careful
consideration during their use.

2.3. Support Vector Regression

Support Vector Regression (SVR) is a supervised learning model for classification
and regression. This approach is beneficial for examining the connections between a
dependent variable and one or more independent variables. By framing an optimiza-
tion problem, SVR learns a regression function that connects input predictor variables
to the output observed response values. SVR is advantageous as it balances model
complexity and prediction error, demonstrating strong performance, particularly with
high-dimensional data.

Let the dot product pace ¢ be our data universe with vectors x € 2 as objects and
S be a sample set such that S C M. Suppose f : :]’¢ — R is the target function
and D = {(x,y)|x € Sandy = f(x)} is the training set. The regression problem is
to find the best-approximated model? : R? — y for the true underlying function f
mapping input “x” to output “y” by using D such that;‘(x) = f(x). SVR was mainly
developed to solve the nonlinear regression problem, which is more challenging than
linear regression problems.
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2.4. Random Forest

Random Forest (RF) is a robust ensemble learning method that utilizes multiple
decision tree classifiers to overcome the limitations of a single classifier in achieving
the optimal solution (Belgiu & Dragut, 2016; Breiman, 2001; Cutler et al., 2007). By
incorporating many trees instead of a single tree, the RF algorithm employs a majority
vote technique to assign a final class label, thereby improving accuracy. This approach
also helps address issues related to handling many variables in the model. To achieve
this, each tree in the RF model is trained on a randomly generated subset of the train-
ing data and uses only a subset of the tree’s variables. While this strategy may reduce
the performance of individual trees, it reduces the correlation between trees, making
the ensemble more reliable. Additionally, since RF incorporates multiple classifiers,
there is no need to prune individual trees, simplifying the model-building process
(Breiman, 2001). Overall, RF is effective in improving classification performance and
handling complex datasets.

2.5. Gradient Boosting Machines

Gradient Boosting Machine (GBM) is a prediction algorithm based on decision trees
(Friedman, 2001). It constructs a model gradually, additively, and sequentially by
combining multiple decision trees in linear combinations (Biau et al., 2019). GBM
shares a foundational concept with AdaBoost, making it easier to understand. How-
ever, the critical difference lies in how they address the weaknesses of weak classifiers.

In AdaBoost, weaknesses are identified using high-weight data points that are difficult
to fit, whereas in GBM, they are identified using gradients. The methodology involves
modeling data with simple base classifiers, analyzing errors, focusing on hard-to-fit
data points to correct them, and assigning weights to each predictor to combine all
predictions for a final result.

GBM has demonstrated significant success in various applications, including text clas-
sification, web searching, landslide susceptibility assessment, and image classification
(Chen & Guestrin, 2016; Samat et al., 2020). However, GBM may not perform well
with exceptionally noisy data, as it can lead to overfitting (Jafarzadeh et al., 2021).

2.6. XGBoost

Extreme Gradient Boosting Machine (XGBoost), developed by Chen and Guestrin
(2016), is a gradient tree boosting method that builds upon regular Gradient Boosting
Machines (GBM) with several enhancements. It introduces features like regularization
to prevent overfitting tree pruning that specifies tree depth using the Maximum
Tree Depth (MTD) parameter and prunes the tree backward instead of based on
loss criteria, resulting in improved computational performance and parallelism that
utilizes a block structure for parallel learning, leading to faster computation (Zhong
etal,, 2022). XGBoost employs a decision tree as a booster and has shown outstanding
performance across various ranking tasks, classification, and regression (Samat et al.,
2020). Despite its success, XGBoost has not been extensively studied in remote sensing
image classification tasks, particularly concerning spectral and spatial features, classi-
fication accuracy, computational efficiency, and the influence of crucial parameters.
The main advantages and disadvantages of only numerical values are accepted for
processing.

2.7. LightGBM

The LightGBM algorithm is a gradient-boosting framework that builds on the concept
of decision trees (Shi et al., 2019). It is designed to reduce computation time while
maintaining high accuracy (Friedman, 2001; Ke et al., 2017; Shi et al., 2019). An
important distinction between LightGBM and other decision-tree-based algorithms
lies in its tree growth strategy. While traditional methods grow trees level-wise (hor-
izontally), LightGBM grows trees leaf-wise (vertically), leading to a more complex
structure (Machado et al., 2019). This approach enhances the efficiency of the algo-
rithm. Although the implementation of XGBoost and LightGBM is similar, Light-
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GBM outperforms XGBoost in training speed and ability to handle large datasets.
However, both methods require extensive parameter tuning for optimal classification
performance and reliable results compared to methods like Random Forest (RF).

2.8. Data preparation

The dataset used in this study was obtained from the Southern Palm Oil Industry
(1993) Co. Ltd. in Surat Thani province, Thailand. The data collection process involved
two main components. Firstly, data were gathered in real-time situations using spe-
cially designed devices based on IoT (Internet of Things) technology. These devices
featured Resistive Level Sensors and Temperature Humidity Sensors installed on the
ESP32 NodeMCU board, as depicted in Figure 1.

Figure 1 IoT devices for collecting oil palm data.

The collected humidity and resistance level data were transmitted to the server using
the Internet as a web application. Simultaneously, laboratory experiments were con-
ducted utilizing Soxhlet extraction (see Figure 2), followed by laboratory scientists
performing the measurements and recording the results in a spreadsheet. Due to the
preliminary nature of this study and the time constraints involved, a sample size of
30 seedlings was used. The data collection spanned two months, from February to
March 2023, with data collected continuously daily throughout this period. Each day,
the testing team could test only 2-3 samples. Additionally, to ensure data accuracy
and completeness, efforts were made to avoid missing values, especially considering
the limited sample collection.

For the IoT data, the average of measurements from 3 positions at each level of the oil
palm fruit was used to minimize potential discrepancies. The data source in Surat
Thani province of Thailand provided valuable insights for the study’s analysis and
conclusions.

2.9. Data model

Machine learning involves a set of methods where computers can model the relation-
ship between numerical data representations and specific target values (Hao & Ho,
2019). Machine learning is broadly categorized into two types: supervised learning
(which trains on known inputs and outputs to predict future outputs) and unsuper-
vised learning (which discovers patterns or structures in the input data) (Swamy-
nathan, 2017) (Figure 1). The machine learning techniques applied in our study
included linear (linear Regression) and nonlinear models (Decision Tree, Random
Forest, Gradient Boosting (GB), eXtreme Gradient Boosting (XGBoost), Light Gradient
Boosting Machine (LightGBM), and Support Vector Regression (SVR)).
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Figure 2 Soxhlet extraction.

These algorithms are some of the most commonly utilized approaches in recent
literature (Cakit & Dagdeviren, 2022). Each belongs to a distinct algorithmic family
with fundamentally different internal architectures (Fernandez-Delgado et al., 2014).
Basic descriptions of these methods are presented in Table 1.

All the models were implemented in Python/Jupyter Notebook, and scikit-learn pack-
ages were employed to incorporate these machine-learning algorithms into our study
(Pedregosa et al., 2011). An overview of the modeling done is presented in Figure 3.

2.10. Performance metrics

To assess the disparity between the observed and predicted values (error) for the mod-
els employed in this study, various performance metrics were utilized, as described by
Cakat and Karwowski (2017) and Cakat et al. (2020). In this analysis, the effectiveness
of the algorithms used was determined by evaluating the model’s accuracy through
metrics, such as Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and
the coefficient of determination (R?). Low values of RMSE and MSE indicate more
precise model outcomes, while higher R? values signify a stronger alignment between
observed and estimated values. These metrics were computed using the following
equations:

1 n

MSE = =5 (P} — A})” 6))
i=1
1 n

MAE = ;Z le,] )
i=1

no(pY_ AY 2
RZ - 1— (Ei—lz<n1AV2 z) ) (3)
=171
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Table 1 Overview of machine learning methods and Python packages.

Method Description Python package

Linear Regression Simple statistical method modeling the relationship between scikit-learn
dependent and independent variables

Decision Tree Tree-like model making decisions based on input features, scikit-learn
suitable for classification/regression

Random Forest Ensemble method building multiple decision trees to improve scikit-learn
accuracy and reduce overfitting

Gradient Boosting Ensemble method building trees sequentially, correcting errors scikit-learn
of previous ones

XGBoost Efficient and scalable implementation of gradient boosting, xgboost
known for speed and performance

LightGBM Gradient boosting framework designed for speed and lightgbm
efficiency, suitable for large datasets

Support Vector Regression (SVR) Regression technique using support vector machines to find a scikit-learn
hyperplane representing the relationship

Dataset

Training Data Test Data

[ Oil Ripeness and Volume Prediction ]

[ s | | RF | [ 6B | [xGBoost]

[ LightGBM ] [ Linear Regression ] [ Decision Tree ]

I

[ Accuracy Evaluation and Performance Comparison ]

Figure 3 Overview of the supervised machine learning models used in this study.

where

« A} and P are the actual and predicted values, respectively,
« ¢;: is the prediction error for each seedling.

« n: total number of seedlings tested.

e i=1,2,3,..,n

3. Results

In this study, we present the results obtained from our predictive analysis. The pre-
dictions of oil content in ripe and raw oil palm fruit at the top, middle, and down
positions are illustrated in Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, and Figure 9,
respectively.

Additionally, Figure 10 and Figure 11 present the results obtained from oil volume
predictions in semi-ripe and unripe oil palm fruit, respectively.

4. Discussion
4.1. Performance evaluation based on oil palm fruit position (ripe fruit)

In our analysis of oil content prediction in ripe fruit (Table 2), in the “Top position,
both GBM and RF models exhibited superior predictive accuracy compared to the
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Figure 4 Comparison between real-world observations and the outputs generated by the proposed algorithms for ripe oil palm in
the top position.
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Figure 5 Comparison between real-world observations and the outputs generated by the proposed algorithms for ripe oil palm in
the middle position.
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Figure 6 Comparison between real-world observations and the outputs generated by the proposed algorithms for ripe oil palm in
the down position.
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Figure 7 Comparison between real-world observations and the outputs generated by the proposed algorithm for raw oil palm in
the top position.
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Figure 9 Comparison between real-world observations and the outputs generated by the proposed algorithms for ripe oil palm in
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Table 2 Performance metrics for oil content prediction.

s/no Model MSE MAE R?
Ripe Fruit (Top)
1 Linear Regression 53.2207 5.3482 —0.0008
2 Decision Tree 21.7890 1.7010 0.5903
3 Random Forest 19.8729 3.6296 0.6263
4 Gradient Boosting 20.9668 2.0506 0.6057
5 XGBoost 21.7806 1.7035 0.5904
6 LightGBM 53.4167 5.4062 —0.0045
7 SVR 52.7411 5.1968 0.0082
Ripe Fruit (Middle)
1 Linear Regression 44.3771 5.5154 —0.0021
2 Decision Tree 30.5705 2.0820 0.3097
3 Random Forest 28.0404 3.6351 0.3668
4 Gradient Boosting 29.4955 2.2857 0.3339
5 XGBoost 30.5648 2.0830 0.3098
6 LightGBM 45.5526 5.5717 —0.0287
7 SVR 46.4804 5.4742 —0.0496
Ripe Fruit (Down)

1 Linear Regression 35.5574 4.7928 0.1246
2 Decision Tree 11.2403 1.2877 0.7233
3 Random Forest 13.5343 2.9764 0.6668
4 Gradient Boosting 11.0222 1.5340 0.7286
5 XGBoost 11.4525 1.3073 0.7180
6 LightGBM 40.9264 4.9871 —0.0076
7 SVR 42.2113 5.0968 —0.0392

other algorithms. The RF model, in particular, had a higher R?, indicating a more
precise fit to the data. The XGBoost and DT methods closely followed suit, under-
scoring their strong performance in capturing variations in ripeness. Similarly, the
Decision Tree and RF models had the lowest MSE and MAE values for oil palm
fruit in the ‘Middle’ position. GBM and XGBoost also demonstrated strong perfor-
mance, emphasizing their reliable predictive capabilities across different positions
on the palm tree. Lastly, in the ‘Down’ position, the Decision Tree and Gradient
Boosting models consistently outperformed the other methods. These findings align
with Sinambela et al. (2020), who also highlighted the central position of the fruit as a
critical indicator of ripeness. Sinambela’s statistical approach using two-way ANOVA
supports our conclusion that model accuracy is influenced by the fruit position on the
tree.

4.2. Performance evaluation based on oil palm fruit position (raw fruit)

For oil content prediction in raw fruit (Table 3), the RF model stood out as the top-
performing model in the “Top’ position, demonstrating superior accuracy with the
lowest MSE values and a relatively high R-squared value, indicating a strong fit to the
data. The other models, such as GBM, XGBoost, and DT, performed well with slightly
higher MSE and a lower R-squared value than the RF model.

In the ‘Middle’ position, the DT model with the lowest MAE value and GBM with
the lowest MSE and the highest R-squared value demonstrated superior performance
compared to the other models. This indicates their ability to predict oil content in raw
fruit more accurately than the other models. The Random Forest and XGBoost models
also showed competitive performance in this position, highlighting their consistency
across different scenarios.

In the ‘Down’ position, DT, with the lowest MAE value, and GBM, with both
the lowest MSE and the highest R-squared value, outperformed the other models.
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Table 3 Performance metrics for oil content prediction.

s/no Model MSE MAE R?
Raw Oil Palm (Top)
1 Linear Regression 53.2207 5.3482 —0.0008
2 Decision Tree 21.7890 1.7010 0.5903
3 Random Forest 19.8787 3.6780 0.6262
4 Gradient Boosting 20.9668 2.0506 0.6057
5 XGBoost 21.7806 1.7035 0.5904
6 LightGBM 53.4167 5.4062 —0.0045
7 SVR 52.7411 5.1968 0.0082
Raw Oil Palm (Middle)
1 Linear Regression 107.9818 8.4360 0.2432
2 Decision Tree 40.6303 2.1863 0.7153
3 Random Forest 44.8086 4.8512 0.6860
4 Gradient Boosting 39.2065 2.5192 0.7252
5 XGBoost 40.6236 2.1873 0.7153
6 LightGBM 142.6922 9.5858 —0.0045
7 SVR 105.2121 8.1649 0.0829
Raw Qil Palm (Down)

1 Linear Regression 127.0705 8.6701 0.2244
2 Decision Tree 38.8223 2.3367 0.7630
3 Random Forest 45.5283 5.0568 0.7221
4 Gradient Boosting 38.0251 2.7397 0.7672
5 XGBoost 38.8184 2.3376 0.7631
6 LightGBM 164.3930 10.3114 —0.0034
7 SVR 155.3703 9.2831 0.0517

The XGBoost model also performed well, indicating its robust predictive capabilities
even in challenging scenarios. These results highlight the effectiveness of DT and
GBM for predicting oil content in raw fruit, with XGBoost also proving to be
a strong performer. Similar approaches were utilized by Sae-Tang (2020), who
employed machine learning models, like convolutional neural networks, to estimate
oil content in fresh fruit bunches using surface color as a predictor. Their results also
demonstrated high accuracy, emphasizing the importance of advanced algorithms in
oil content prediction.

4.3. Performance evaluation based on oil volume (semi-ripe fruit)

In our evaluation of predictive models for oil volume in semi-ripe fruit, Table 4 com-
pares the seven algorithms used, highlighting their accuracy and performance. Linear
Regression demonstrated the weakest predictive capability, with the highest MSE of
126.5536 and an MAE of 9.5926, signaling significant deviations from actual values.
The low R-squared value of 0.1130 underscores its poor fit to the data, making it an
ineffective model for the current data. In contrast, DT emerged as the best-performing
model, with the lowest MSE (58.2306) and MAE (4.3087) and an R-squared value
of 0.5919, suggesting it can effectively capture patterns in the data for predicting
oil volume in semi-ripe oil palm fruit. While Random Forest (RF) also performed
well, it did not surpass DT, showing a higher MSE of 69.1243 and a lower R-squared
value of 0.5156. This indicates that although RF remains a strong model, it does
not provide the same level of accuracy as DT. SVR yielded high prediction errors,
with an MSE of 131.8618 and a weak R-squared value of 0.0759, marking it as less
reliable than the other models. GBM showed moderate performance, with an MSE
of 70.6910 and a fair fit (R-squared = 0.5046), while XGBoost performed better, with
a lower MSE (60.7034) and an R-squared value of 0.5746, making it a competitive
alternative to DT. Finally, LightGBM displayed poor predictive capability, with the
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Table 4 Performance metrics for predictive models on semi-ripe and unripe fruit.

Type Method MSE MAE R?
Semi Ripe
1 Linear Regression 126.5536 9.5926 0.1130
2 Decision Trees 58.2306 4.3087 0.5919
3 Random Forest 69.1243 5.6283 0.5156
4 SVR 131.8618 8.8121 0.0759
5 Gradient Boosting 70.6910 4.7757 0.5046
6 XGBoost 60.7034 4.7757 0.5746
7 LightGBM 142.6922 9.5858 —0.0000
Unripe

1 Linear Regression 150.6958 9.8980 0.0802
2 Decision Trees 46.0533 4.3287 0.7189
3 Random Forest 66.1267 6.6388 0.5964
4 SVR 168.8536 9.2666 —0.0306
5 Gradient Boosting 59.8810 5.2948 0.6345
6 XGBoost 45.0934 4.5053 0.7248
7 LightGBM 164.3930 10.3114 —0.0034

highest MSE (142.6922) and an R-squared value close to zero, demonstrating its
unsuitability for this analysis. In conclusion, DT stands out as the most accurate model
for predicting oil content in semi-ripe fruit, outperforming all the other algorithms.
This complements the findings by Wangrakdiskul and Yodpijit (2015), who applied an
exponential growth model for forecasting palm oil production and consumption in
Thailand, showing the significance of accurate prediction models in optimizing palm
oil yield.

4.4. Performance evaluation based on oil volume (unripe fruit)

In our evaluation of predictive models for oil volume in unripe fruit, Table 4 highlights
distinct variations in accuracy and performance across the seven algorithms. Linear
Regression demonstrated the weakest performance, with an MSE of 150.6958, reflect-
ing a considerable discrepancy between the predicted and actual values. Its MAE
of 9.8980 and low R-squared value of 0.0802 further emphasize its limited capacity
to capture the underlying patterns in the data. In contrast, DT significantly outper-
formed Linear Regression, with a notably lower MSE of 46.0533 and MAE of 4.3287,
indicating a more accurate prediction of oil volume in unripe fruit. The R-squared
value of 0.7189 underscores the model’s ability to fit the data well. RF exhibited a
slightly higher MSE of 66.1267 compared to DT. However, it still provided a solid
fit with an R-squared value of 0.5964, positioning it as a robust alternative for predic-
tion. SVR performed poorly, yielding an MSE of 168.8536 and a negative R-squared
value (—0.0306), signifying its lack of predictive accuracy and weak model fit. GBM
displayed moderate predictive capability, with an MSE of 59.8810 and an R-squared
value of 0.6345. XGBoost further enhanced performance, delivering a lower MSE
of 45.0934 and the highest R-squared value (0.7248) among the models evaluated.
LightGBM, however, showcased poor performance, with an MSE of 164.3930 and
an R-squared value of —0.0034, reflecting its inability to model the data effectively.
Overall, DT and XGBoost emerged as the top performers in predicting oil volume
in unripe fruit. These results resonate with the work of Puttinaovarat and Horkaew
(2019), who leveraged deep learning and machine learning methods for identifying oil
palm plantations, demonstrating the versatility and robustness of advanced machine
learning techniques in the context of oil palm yield prediction and detection.

Based on the discussions of the obtained results, the following are suggestions for
the models employed in this study to improve the current understanding of oil palm
fruit harvesting and processing. Firstly, DT, XGBoost, and RF consistently demon-
strate a strong predictive accuracy for oil content across different stages of ripeness.
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The accurate predictions of oil content help determine the optimal time for harvesting
based on the fruit ripeness. This will reduce waste generated from harvesting fruit too
early or too late, directly improving yields. Thus, industry professionals can implement
data-driven harvesting strategies, ensuring that only fruit at peak ripeness is harvested
to reduce losses, streamline operations, and increase profitability significantly.

Next, the analysis of fruit positions (Top, Middle, Down) also reveals that certain
models perform better for specific positions on the palm tree. This implies that har-
vesting strategies can be refined based on the position of the fruit bunches, leading to
more precise and customized harvesting methods. Professionals can tailor harvesting
schedules to focus on specific areas of the tree where fruit shows the highest potential
for oil yield, enhancing labor efficiency and reducing the environmental impact of
broad harvesting approaches.

Lastly, machine learning models, especially when embedded into automated systems,
can provide real-time predictions for oil content in different oil palm fruit positions.
This can be paired with IoT devices or remote sensors, enabling continuous mon-
itoring and data collection for model inputs. Large-scale plantations can leverage
these models to monitor oil content continuously, allowing for dynamic adjustment of
harvest schedules and predictive maintenance of processing facilities. This approach
is consistent with the findings of Worachairungreung et al. (2023), who employed
machine learning and data fusion techniques for classifying land use and land cover
in oil palm plantations. Furthermore, Suppalakpanya et al. (2019) applied exponential
time-series methods for forecasting crude palm oil prices and production in Thailand,
which can complement the models we have discussed, opening avenues for more
integrated forecasting approaches.

5. Conclusions

Recent advancements in precision agriculture have highlighted the critical role of
machine learning in predicting crop yields, leveraging its ability to discern intricate
linear and nonlinear patterns within agrometeorological data. Despite this potential,
the adoption of machine learning techniques for predictive analysis remains limited,
especially within the oil palm industry in Thailand. While prior studies have explored
various aspects of oil palm ripeness through diverse methods, this research builds
upon that foundation by focusing on predicting oil ripeness based on moisture content
in different oil palm positions (top, middle, and down) and oil volume content for
semi-ripe and raw data, utilizing a supervised learning approach.

In the top position, both XGBoost and RF models demonstrated superior accuracy
compared to the other methods. The Decision Tree and Random Forest models
exhibited the lowest MSE and MAE values in the middle position. In contrast, in
the down position, the Decision Tree and Gradient Boosting models consistently
outperformed the other methods. DT and GBM demonstrated exceptional raw oil
volume prediction accuracy with low MSE, MAE, and a high R-squared value. In
contrast, XGBoost emerged as the standout model for oil volume content, proving
to be the most accurate predictor for semi-ripe and unripe oil palms compared to the
other methods.

This study highlights the potential of machine learning to enhance oil palm industry
practices. It reveals top-performing models for accurate ripeness and volume predic-
tions and provides valuable insights for optimizing agricultural strategies in Thailand.

Data Availability

The data that support the findings of this study is available at: https://figshare.
com/articles/dataset/Predictions_of_oil_volume_in_palm_fruit_and_estimates_of_
their_ripeness_A_comparative_study_of machine_learning algorithms/28090769

Code Availability
The code used to analyze the data in the current study is available at: https://github.

com/Ses4short/Oil-palm-Thailand
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