Andrzej JAROSIŃSKI*, Wojciech NATANEK*

WPŁYW TEMPERATURY I CZASU SPIEKANIA NA WŁAŚCIWOŚCI MECHANICZNE PRODUKTÓW OTRZYMANYCH Z ODPADOWEGO FLUORKU WAPNIA

Określono wpływ temperatury i czasu spiekania na właściwości mechaniczne produktów spiekania otrzymanych z odpadowego fluorku wapnia. Otrzymane produkty — syntetyczny fluoryt — ma porównywalne wytrzymałości mechaniczne z fluorytem naturalnym i może być zastosowany w przemyśle metalurgicznym. Maksymalna temperatura spiekania wynosi 700 °C. W wyższych temperaturach zaobserwowano zmianę składu fazowego badanych materiałów jak i też zmniejszenie wytrzymałości mechanicznej otrzymanych produktów spiekania.

WSTĘP

Odpadowy fluorek wapnia po obróbce termicznej, mającej zasadniczo na celu usunięcie wilgoci, znalazł zastosowanie w hutach „Bobrek” i „Labedy” jako substytut fluorytu naturalnego, spełniającego rolę tońnika w procesach metalurgicznych. Jednakże dalsze jego wykorzystanie w tej gałęzi przemysłu jest związane z przeprowadzeniem dodatkowych operacji brykietowania lub granulowania, ponieważ do przebóż hutniczej nadaje się tylko materiał zbytlny o odpowiedniej wytrzymałości. Prace doświadczalne (Jarosiński i in. 1991, 1996, Kowalski i in. 1995) wskazują na możliwość otrzymania fluorytu syntetycznego ze szlamu fluorku wapnia na drodze jego obróbki termicznej. Ze wstępnych prób wynika, że wytrzymałość mechaniczna

brykietów zależy w istotny sposób od temperatury procesu. Celowe zatem staje się podjęcie badań nad określeniem wpływu warunków spiekania na wytrzymałość mechaniczną na ściskanie produktów – fluorytu syntetycznego – otrzymanych ze szlamu fluorku wapnia.

CZĘŚĆ DOŚWIADCZALNA

Charakterystyka materiału

Szlam fluorku wapnia pobierano z Krakowskich Zakładów Przemysłu Nieorganicznego „Bonarka”. Skład chemiczny szlamu stosowanego w badaniach był następujący (% wag.): wilgotność ~40%, pozostałe składniki w odniesieniu do suchej masy – CaF₂ – 75–85%, CaCO₃ – 10–15%, fosfor w przeliczeniu na P₂O₅ – 3–7%, zawartość sodu w przeliczeniu na Na₂O – 2–4%.

Szlamy suszono w warunkach powietrznosuchych, a uzyskanie materiału było następujące: frakcja powyżej 10 mm około 50%, natomiast frakcji poniżej 0,06 mm było około 20%.

Analiza rentgenograficzna wykazała obecność w badanych materiałach fluorku wapnia jako fazy podstawowej o odległościach międzyplaszczyznowych d – 0,314; 0,198; 0,164 nm. Podróżnie występuje również węglan wapnia.

Rys. 1. Widmo podczerwone odpadowego fluorku wapnia
Fig. 1. IR spectrum of calcium fluoride waste

Wykonano także badania spektrofotometryczne w podczerwieni, które pozwoliły na zidentyfikowanie takich faz, jak: fosforan wapnia, węglan wapnia i siarczan wap-
nia. Przykład otrzymanych widm zilustrowano na rysunku 1. Pasma absorpcji 570 i 1090 cm\(^{-1}\) świadczą o obecności fosforanu wapnia, natomiast pasma 880, 1050 i 1400 cm\(^{-1}\) są charakterystyczne dla węgla wapnia. Drgania w podczerwieni z maksimum pochłaniania 600 i 1100 cm\(^{-1}\) wskazują na obecność siarczanu wapnia.

Metodyka badań

We wstępnych próbach (Jarosiński i in. 1991) określono na drodze eksperymentalnej minimalną ilość wody niezbędną do formowania materiału w postaci walców. Wynosiła ona 15% w stosunku do suchej masy odpadowego fluorku wapnia. Przygotowaną masę formowano w postaci walców o średnicy 2 cm i wysokości 2 cm, stosując nacisk formowania 0,2 MPa. Nacisk ten zezwalał na otrzymanie walców, które nie rozwartwiały się, ani nie były zbyt kruche. Następnie walc suszono w suszarce w temperaturze 100 °C, a potem spiekano je w piecu sylitowym w temperaturze od 200 do 900 °C przez okres 1,5 i 2 godzin. Po ostudzeniu próbek do temperatury otoczenia określano ich wytrzymałość mechaniczną na ściskanie. średnią wytrzymałość na ściskanie obliczano z co najmniej 5 pomiarów.

WYNIKI POMIARÓW I ICH OMÓWIENIE

Wyniki pomiarów przedstawiono na wykresie (rys. 2) oraz w tabeli 1. Z przedstawionych danych wynika, że zarówno ze wzrostem temperatury, jak i czasu spieka-

Rys. 2. Zależność wytrzymałości na ściskanie otrzymanych produktów od temperatury spiekania

Fig. 2. Dependence of the compressive strength of the products obtained on the sintering temperature
nia odpadowego materiału wytrzymałość na ściskanie rośnie do temperatury 700 °C. Produkty spiekania otrzymane w temperaturach 800 i 900 °C charakteryzują się niższą wytrzymałością, porównywalną z wytrzymałością uzyskaną dla produktów wygrzewanych w temperaturze 100 °C (tab. 1).

W produktach uzyskanych w temperaturze 800 i 900 °C zaobserwowano na całej powierzchni próbek pęknięcia i rysy. Im wyższy był udział węglanu wapnia w materiale wyjściowym, tym stopień deformacji próbek był większy, a wytrzymałość na ściskanie niższa. Analiza fazowa powyższych produktów potwierdziła w próbie otrzymanej w 900 °C całkowity zanik fazy CaCO₃ i pojawienie się fazy CaO. Równocześnie powstała faza apatytowa Ca₅F(PO₄)₃ (rys. 3). Potwierdzeniem powyższych spostrzeżeń jest wyższy stopień dyspersji wartości wytrzymałości dla próbek spiekanych w temperaturze 800 i 900 °C.

![Dyfraktogram produktu spiekania (900 °C, 2 h)](image)

Rys. 3. Dyfraktogram produktu spiekania (900 °C, 2 h)

X-ray diffraction diagram for the sintering product (900 °C, 2 h)

Zależność wytrzymałości na ściskanie produktów spiekania próbek z fluorku wapnia od temperatury spiekania w zakresie 100–700 °C skorelowano zależnością liniiową:

\[R_{C2} = 0,0245 \times t + 11,124 \]

\[R_{C1,5} = 0,02161 \times t + 7,943 \]

gdzie:

\(R_{C2} \) i \(R_{C1,5} \) – wytrzymałość dla próbek wygrzewanych przez okres 2 i 1,5 h.
Prosta regresji wykazuje dobrą zgodność z wynikami doświadczalnymi. Świadczą o tym współczynniki korelacji liniowej, które przyjmują wartość bliską jedności $r_1 = 0,997$, $r_2 = 0,998$.

Tabela 1. Wytrzymałość mechaniczna produktów spiekania odpadowego fluorku wapnia
(czas spiekania 2 h)
Strength of sintering products obtained from calcium fluoride waste (time of sintering 2 h)

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Temperatura spiekania, °C</th>
<th>Średnia wytrzymałość na ściskanie, MPa</th>
<th>Współczynnik zmienności, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>13,7</td>
<td>1,19</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>15,9</td>
<td>5,73</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>18,0</td>
<td>6,0</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
<td>21,1</td>
<td>4,67</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
<td>23,9</td>
<td>3,98</td>
</tr>
<tr>
<td>6</td>
<td>600</td>
<td>25,8</td>
<td>4,19</td>
</tr>
<tr>
<td>7</td>
<td>650</td>
<td>27,1</td>
<td>6,38</td>
</tr>
<tr>
<td>8</td>
<td>700</td>
<td>28,0</td>
<td>6,10</td>
</tr>
<tr>
<td>9</td>
<td>800</td>
<td>14,3</td>
<td>13,58</td>
</tr>
<tr>
<td>10</td>
<td>900</td>
<td>13,1</td>
<td>16,08</td>
</tr>
</tbody>
</table>

Rys. 4. Skurczliwość odpadowego fluorku wapnia w zakresie temperatur 20–1200 °C
Shrinkage of calcium fluoride waste in the temperature range of 20–1200 °C

W kolejnej serii pomiarów wykonano badania mające określić zachowania się odpadowego fluorku wapnia w podwyższonej temperaturze. Przeprowadzono je za pomocą mikroskopu wysokościometrycznego, firmy Leitz, a polegały na obserwacji
i rejestracji fotograficznej zmian wymiarów i kształtu próbek wywołanych zmianami fizykochemicznymi zachodzącymi w procesie wypalania. Z różnicy planimetrowanych powierzchni próbek wyliczono skurczliwość. Zaleźność skurczliwości od temperatury przedstawiono na rys. 4.

Z obserwacji mikroskopowych w warunkach termicznej obróbki odpadowego fluorku wapnia wynika, że w zakresie temperatur 750–1000 °C skurczliwość wynosi około 3%. W temperaturze około 850 °C obserwuje się spiekanie próbek w wyniku zachodzących przemian fizykochemicznych pomiędzy poszczególnymi cząstkami substancji wchodzących w skład próbek. Powyżej temperatury 1000 °C zaczyna się mięknięcie próbek.

PODSUMOWANIE I WNIOSKI

Na podstawie przeprowadzonych badań stwierdzono, że przemianom chemicznym i fazowym, jakie kolejno zachodzą w czasie ogrzewania odpadowego fluorku wapnia, towarzyszą zmiany własności fizycznych materiału. Walce wygrzewane do temperatury 700 °C wykazują wzrost wytrzymałości na ściskanie. Wygrzewanie walców w temperaturach powyżej 800 °C przyczynia się do obniżenia wytrzymałości próbek i jest wynikiem reakcji dysocjacji termicznej węglanu wapnia oraz reakcji między fazami stałymi, co prowadzi do wstępnego spieczenia materiału.

W zakresie temperatur 750–1000 °C skurczliwość wynosi około 3%. W miarę dalszego podwyższania temperatury następuje mięknięcie próbek.

Wraz ze wzrostem czasu wygrzewania następuje wzrost wytrzymałości walców. Optymalne wydaje się być brykietowanie w temperaturze >500 °C przez 2 godziny. W przypadku wygrzewania walców przez 1,5 godziny wytrzymałość taką uzyskuje się w temperaturze 700 °C. Wartości wytrzymałościowe na ściskanie brykietów otrzymywanych z odpadowego fluorku wapnia odpowiadają wytrzymałości fluorytu naturalnego.

Wyniki te wskazują, że syntetyczny fluoryt otrzymany z odpadowego fluorku wapnia metodą spiekania, może być wykorzystany w przemyśle metalurgicznym. Wymaga to jednak wstępnego wysuszenia szlamów fluorku wapnia w warunkach powietrza-suchych a następnie jego brykietowania. Brykiety należy poddać obróbce termicznej.

Warunki spiekania w zasadniczy sposób rzucają na wytrzymałość produktów spiekania. Istotną rolę odgrywają czas i temperatura spiekania brykietów.

LITERATURA

GOLLINGER H., KOWALSKI Z., WZOREK Z. (1994), Wykorzystaniefluorku wapniowego do produk-
cji materiałów budowlanych, Arch. Ochr. Środ., 3–4, 423.

JAROSIŃSKI A., NATANEK W., KOWALSKA B. (1991), Badania fizykochemiczne odpadowego
fluorku wapnia, Frace własne, Instytut Chemii i Technologii Nieorganicznej PK Kraków, (praca nie-
publikowana).

This study has been conducted in order to determine the influence of temperature and time on the mechanical properties of sintering products obtained from calcium fluoride waste. The obtained product – synthetic fluoride – has comparable mechanical strength with that of natural fluoride and may be used in metallurgical industry. The maximum temperature of sintering is 700 °C. At higher temperatures a change of the phase composition of tested materials as well as a decrease of the mechanical strength of the obtained sintering products were observed.