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Abstract: Talc has many applications in various branches of industry. This material is an inert one with a
naturally hydrophobic surface. Talc agglomeration is within the wide interest of pharmaceutisatyind

Oil agglomeration experiments of talc were carried out to find out and assess the significance of
experimental factors. Centralomposite dsign (CCD) was used to estimate the importaand
interrelationof the agglomeration process parametersr Eaperimental factors have been evaluated, i.e.
concentration of cationic surfactant and oil, agitation intensity as well as time of the process. The median
size of agglomeratesD60) and the polydispersity span (PDI) were used as the process responses.
Logarithmic transformations of the responses provide better description of the model, than untransformed
responses, witthereduced cubic model fa50 and quadratic model for PDI. This was supported by the
Box-Cox plots. It was shown that there were mastatistically important factors, includinthe
concentration of cationic surfactant and stirring rated®0, concentration of oil and stirring rate for

PDI, as well as various interactions, up to third ordeD®0. Optimal conditios for minimum valuesf
reagenamounts as well as mixing time and intensitytf@maximum size of agglomerates but of rather
narrow size distribution were found.

Keywords talc, oil agglomeration, optimizatiormentral composite desigdesign of experiment

I ntroduction

Talc is a magnesium silicate mineral which usually occurs in either foliated, granular
or fibrous forms. It is commonly used as a filler and a coating agent in paints,
lubricants, plastics, cosmetics, pharmaceuticals and ceramics manufacture. It is also
applied as a nucleating agent in plastic foaming proce@semg and Park, 2012)
This substance is an inert one witmaturally hydrophobic surfacBremmell and
AddairMensd, 2005) The pharmaceutical industry is one of the branch, where
agglomeration of talc is an interesting is¢liedhav et al., 2011)

Oil agglomeration is a size enlargement method that facilitates separatio
operations of solid processing (filtration, flotation, sedimentat{&mhis, 1996) The

http://dx.doi.org/10.5277/ppmp170230



1062 I. Polowczyk, T Kozlecki

main advantages making this method interesting for industrial applications (e.qg.
pharmaceutics, pigments, and pesticide®: drigh selectivity, possibility of fine
particles aggregation (belowss m and simple equipmeriPietsch, 1991; House and
Veal, 1992; Huang and Berg, 2003)il agglomeratiormostly depends on surface
properties of particles and oil/water interfg@rzymala, 2007; Bastrzyk et al., 2011;
Bastrzyk et al., 2012)n this process, an addition of anmiscible liquid (binder) to a

solid aqueous suspension causes adhesion of hydrophobic particles by capillary
interfacial forces(Rossetti and Simons, 2003; Negreiros et al., 2018) the
suspension, between these hydrophobic particles liquid bridges are formed, which are
responsible for the mechanical strength and stability of agglomerates obtained,
whereas, the hydrophilic particles remain-agglomerated(Sonmez and Cebeci,
2003) Literature data show that the several other factors affected the course of olil
agglomeration, which include the oil amount and type, particle size, agitation rate and
time, pH, and surfactant concentrati®adowski, 1995; Aktas, 2002; Sonmez and
Cebeci, 2003; Duzyol and Ozkan, 2010; Bastrziykle 2011; Bastrzyk et al., 2012;
Duzyol and Ozkan, 2014; Duzyol, 2015)

Success of oil agglomeration depends on selection of suitable operating parameters
(Balakin et al., 2015) Therefore, it is very imprtant to determine the operating
parameters at which the responses reach their optimum.

The best known method for determining the important operating parameters for
agglomeration is to carry out experiments by changing one parameter and keeping the
othersat a constant level. However, this evariableatatime technique does not
include interactive effects of parameters, and does not depict the exact effects of
various parameters on the procéSkary and Dastidar, 2013; Aslan and Unal, 2011,
Aslan, 2013) In order to avoid this, optimization studies using design of experiments
are of great importance.

Currently, numerous experimental designs are used. The most importaotdest
designs are¢ factorial, wheren is the number of control variabléMontgomery,

2001) and the PlackeBurman design(Plackett and Burman, 1946Yhe most
important secongbrder models are: central composite (C@Bdx and Wilson, 1951)
and BoxBehnken thredevel design(Box and Behnken, 1960)n the literature, a
number of useful dégn or technigues can be found to optimize the parameters for oll
agglomerationlt can be listed as the Taguchi meth@hary and Dastidar, 2010;
Kumar et al., 2015)response surface methodology (RSMebeci and Sonmez,
2006; Aslan and Unal, 2009; Aslan and Unal, 20aayl grey relational analysis
(GRA) (Aslan,2013)

Central composite design (CCD) is an experimental design affiliated to response
the surface methodologiLiu et al., 2011) This method provides graphs rendering
and including the expandedenter points (Oney and Tanriverdi, 2012)Results
obtained from the experiments in the light of the experimental design are defined as a
function of factors. Several polynomial models are used to create the model equation.
These polynomialshow how the response of the system parameter values obtained
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effect at the same tim@Oney and Tanriverdi, 2012)CCD is ideal for sequential
experimentation and allows a reasonable amount of information for testingfléit
while not involving an unusually large number of design pdiDEmirel and Kayan,
2012) The central composite design has found an application for optimization of
chemical processes such as textile dye didgian (Demirel and Kayan, 2012)
removal of dyegAzami et al., 2012; Azami et al., 2013pcculation and coagulation
of wastewater(Fendri et al., 2013)and extraction of protein from wastewater
(Ramyadevi et al., 2012However, until now, there is no information reported on
optimization of oil agglomeration of solid particles usingtcC

In this study, the importance of process parameters in oil agglomeration of talc was
evaluated using the central composite design. The surface active agent and bridging oil
concentrations together withe agitation intensity and process time were eatdd
experimental factors. The median size of agglomerdigg @nd the particle size
distribution span (PDI) were the process responses.

Materials and methods

A talc powder was purchased from LG Olsztyn (Poland) and originated from IMI Fabi
LLC (USA). This mineral sample was used as obtained and was of a pharmaceutical
grade and, according to supplier information, conformed to the requirements of
Pharmacopea. The average particle diameter of talc, determined using Mastersizer 2000
(Malvern),a | aser diffraction instrument, W a ¢
powder determined by FlowSorb 2300 Il instrument (Micromeritics) was 4g8-m

Oil agglomeration tests were carried out in a glass vessel (25@itman inner
diameter of 60 mm)A sample of 5 grams of talc together with 100°@h distilled
water wasntensively stirred by using the IKA EUROSTAR power contrisic 6000
overhead mechanical stirrer equipped with -bl&8led propeller. The products of
agglomeration were separated and dried, and then subjected to the image analysis. The
procedure was as follows. Photograpliere taken usingthe Axiolmager M1m
microscope(Zeiss), operating irthe transmitted light mode, and 8 bit grayscale
pictures were collected. Using ImagePro Plus ver. 6.0 software (Media Cybernetics),
histogrambased segmentation with 3 meshwasapplied, resulting in whiten-black
image, which wasnalysed automatically in respectttee mean diameter, counting
bright objects. Because, in some cases, particles were bridged, an automatic watershed
split was applied. Measurement dateere transferred to MSExcel, andthe median
size and PDWerecalcuated.

Oil agglomeration of talc proceeds irregularly without surfactant addition because
of the properties of talc surfaceThe cationic surfactant dodecylammonium
hydrochloride (DDAHCI) (POCh) was applied as a wetting agent and an emulsifier,
while kercsene (Sigmahldrich) was used as bridging oil (Kelebek et al., 2008;
Bastrzyk et al., 2011; Polowczyk et al., 2014)
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Central composite design (CCD) was used to eddnthe importance of the
agglomeration process parameters. The median size of agglomBmjem( particle
size span( $))werethe process responses. Data waralyzedusing a demo version
of StatEase 10.0.5 software (Design Expert).

Results and disussion

Response surface methodology (RSM) is a set of statistical methods for empirical
model building (Box and Draper, 1987;; Montgomery, 2Q0XKhuri and
Mukhopadhyay, 200). Using design oéxperiment (DoE) techniques, output
variables (responses) can be optimizedespect tanput variables. An experiment
consists of several runs, with varying input variablegrder to identify and quantify
changes in output respses. Usually, such relationship canapgroximated by low

level polynomial:

® Qof T (1)

wherewis a response of interesb, & B I is the set of input variables, is
the number of variable$SQw is a vector function consisting of powers and cross
products of powers ofo fro F8 fo , up to a certain degree (usually 1 or12)is a
vector of unknown constant coefficients, called parameters,Taml a random
experimental error. The surface repented byQwT is called a response surface.

There are two most important models used in RSM, that is first and second degree.
The former one is represented by equaiimuri and Mukhopadhyay, 201.0)

w I B o f )

wherel are the linear coefficients and is an intercept. Second order model is
described by the following equation:

T B & B I @ B T & f 3)

wheref are called crosproduct coefficients, anfl are quadratic coefficients.

SometimeB | w term is omitted from the model, which is then calleth&or
interaction (2FIl). When complete equation (3) is employed, the model is called either
full quadratic or simply quadratic. Sometimes, third level (cubic) equatiaisas
used. Such cubic model is usually too complicated, and ther@agential risk of
aliasing, i.ewhen estimate of effect also includes the influence of either on®@
other effects, usually higbrder interactions. Aliasing does not need to confound
whole model, because such higher order interaction is oftenexistent or
insignificant(Antony, 2003)

Frequently used in the indtrial applications as well as in scientific research,
central composite design (CCD) was selected in this study. Generally, CCD can be
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described ax; factorial design with additional central and axial points, allowing
calculating parameters of a secesrdler model. It involves; factorial points,ce

axial points and one central point. Usually axial and/or central points are replicated.
Axial points are placed at the distancdrom the design center, thus CCD uses five
levels of parameterst h phrh ph | . The value of is usually chosen to make
design either orthogonal or rotatablBraper, 2008) The experimental design is
orthogonal if the effects of any factor sum to zero across the effects of #e oth
factors. The design is rotatable if the variance of the predicted response at any point
depends only on the distancecafrom the center point. Rotatability is achieved when:

| W . (4)

The design studied in the current contribution consisted of four experimental
factors, that is DDAHGto-talc mass ratio (A), kerosette-talc mass ratio (B),
stirring time (C) and stirring rate (D). For 4 factors, in order to achieve rotatability,
accordng to equation (4), the value pfshould besqual to 2. Unfortunately, this
resulted imegative values of parameters A and |atlevel, thus we sgt 8
We decided to skip parameter coding and the actual values were used instead. The
values of paraeters are given iffable 1, and the summary of the design in Table 2.

Tablel. Experimental factors

Level
Parameter Unit Label Ta [ 0 +1 +a
DDAHCI-to-talc mg g* A 1.31 1.60 2.30 3.00 3.28
Keroseneto-talc gg’ B 0.38 0.48 0.72 0.96 1.06
Time min C 3.44 8 19 30 34.6
Stir rate rpm D 620 1200 2600 4000 4580

Table2. Parameters of experimental design

Parameter Value
Design type Central composite
Process order 2FI/Quadratic/Cubic

Number ofvariables

Number of responses

Star distanced)

Replicates of factorial points
Replicates of star points
Center points

w N
_bl\)l\)Hll\)-b

Total number of runs
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Table3. Results of experimental runs

Run DDAHCI[mgg'] Kerosendgg?’ Time[min] Stirrate[rpm] Ov 1fmm] PDI

1 1.31 0.72 19.00 2600 0.079 3.14
2 131 0.72 19.00 2600 0.168 1.96
3 1.60 0.48 8.00 1200 0.052 2.82
4 1.60 0.48 30.00 1200 0.316 1.34
5 1.60 0.48 8.00 4000 0.093 14

6 1.60 0.48 30.00 4000 0.131 0.81
7 1.60 0.96 8.00 1200 0.135 4.47
8 1.60 0.96 30.00 1200 0.263 5.58
9 1.60 0.96 8.00 4000 0.135 3.39
10 1.60 0.96 30.00 4000 0.039 15.42
11 2.30 0.38 19.00 2600 0.171 0.59
12 2.30 0.38 19.00 2600 0.111 0.67
13 2.30 0.72 3.44 2600 0.191 3.04
14 2.30 0.72 3.44 2600 0.24 3.05
15 2.30 0.72 34.60 2600 0.399 1.41
16 2.30 0.72 34.60 2600 0.372 1.84
17 2.30 0.72 19.00 620 0.091 3.58
18 2.30 0.72 19.00 620 0.061 6.85
19 2.30 0.72 19.00 4580 0.159 1.03
20 2.30 0.72 19.00 4580 0.168 1.62
21 2.30 0.72 19.00 2600 0.657 1.22
22 2.30 0.72 19.00 2600 0.62 3.96
23 2.30 1.06 19.00 2600 0.097 4.64
24 2.30 1.06 19.00 2600 0.143 2.89
25 3.00 0.48 8.00 1200 0.144 6.8

26 3.00 0.48 30.00 1200 0.361 2.37
27 3.00 0.48 8.00 4000 0.199 0.58
28 3.00 0.48 30.00 4000 0.404 1.34
29 3.00 0.96 8.00 1200 0.292 5.74
30 3.00 0.96 30.00 1200 0.129 431
31 3.00 0.96 8.00 4000 0.193 1.24
32 3.00 0.96 30.00 4000 0.03 9.72
33 3.28 0.72 19.00 2600 0.605 3.77
34 3.28 0.72 19.00 2600 0.574 2.88

Two responses were analyzed: median particle (85€) and particle size width
DPI defined agMerkus, 2009)

0$) —— (5)
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where D10 and D90 are first and last decile§Sheskin, 2004)of particle size
distribution, respectively. This parameter, sometimes called span, is commonly
accepted as a measure of width of particle size distribufiberkus, 2009) In
practice, in agglomet@n processes a relatively uniform and narrow agglomerates
size distribution is requested for the granular pro@igtsch, 1991; 2005

All runs were randomized in order to avoid systematic errors. The results are
shown in Table 3.

One can observe that the ratio of maximal to minimal response is, in both cases,
greater than 20. This suggests that some transformation should be applied. Base 10
logarithm was selected #&se transformation function. This selection was supported by
the Box-Cox transformatiorfBox and Cox, 1964)

Design Expend Sottware Box-Cox Plot for Power Transforms Desigr-Experte Software Box-Cox Plot for Power Transforms

Lambda ” Lambda
Current =1 Current =1
Best=-0.07 Best =-0.07
Low Cl=-054 Low Cl. =-0.52
High CL=0.44 High CL =0.37 o]
Recommend transform Recommend transform:
Lo

Log g
(Lambda =0) (Lambda = 0)

Ln(ResidualSs)
Ln(ResidualSs)

a) Lambda b) Lambda

Fig. 1 The BoxCox plots of original data a) f@50 and b) for PDI

Design-Expert® Software Box-Cox Plot for Power Transforms Design-Expert® Softw are Box-Cox Plot for Power Transforms
Log10(D50) Log10(PD)

Lambda Lambda
Current =0 Current=0

Best =-0.07 Best =-0.07

Low C.L=-0.54 Low Cl.=-0.52
High C.1. = 0.44 High C.L. =037
Recommend transform: Recommend transform:
Loy

Log 9
(Lambda =0) (Lambda = 0)

Ln(ResidualSs)
H 5
L

Ln(ResidualSs)

a) Lambda b) Lambda

Fig. 2. The BoxCox plots of transformed data a) 1960 and b) for PDI

The BoxCox plots obtained before and after logarithmic transformation by the
Design Expersoftwareareshown in Figs. 1 and fbr D50 and PDI, respectively a)
and b). Current lambda values el for the original data (Fid) and this value was
beyond the confidemc intervals (C.l.). However, best value lambda wa<7
showing the need of logarithmic transformation for the both paemeAfter
transformation (Fig2), the lambda obtained was 0 and this value was very near to
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0.07 and between the confidence intervals showing the efficiency of logarithmic
transformation.

All calculations were performed at significance threshold equal to 0.05, and then
re-analyzed at the threshold lowered to 0.01. Significance level of thet effec
different parameters on two responses was estimated by the Fishértest) (Box,

1953) and corresponding-values. The comparison of models is shown in Tables 4
and 5.

Table4. Compaison of process orders for ID§0 response

Process order

Parameter 2-Factor Quadratic vs. Zactor Cubic vs. quadratic
interactions vs. interactions
linear
F value 2.36 5.38 8.27
p-value 0.0639 0.0045 0.0014
Model summary

Y 0.4829 0.7576 0.9713
AdjustedY 0.2581 0.5789 0.9052
PredictedY 710.0309 0.2063 0.7675
Adeq. Precision 6.686 8.256 15.046
Aliased terms None None AC? AD? B°C, B°D, BC?, BD?,

Ccp, cp? B C, D°

Table5. Comparison of process ordéos logPDI response

Process order

Parameter 2-Factor interactions Quadratic vs. Zactor Cubic vs. quadratic
vs. linear interactions
F value 5.04 211 0.2746
p-value 0.0020 0.1191 0.2746
Model summary
Y 0.7870 0.8526 0.9368
AdjustedY 0.6945 0.7440 0.7914
PredictedY 0.4696 0.7914 0.4396
Adeq. precision 11.879 10.728 10.439
Aliased terms None None AC?, AD? B%C, B°D, BC?, BD? C°D,
cD? B3 ¢ D

In the case of ldd@50) response (Table 4), one can see thatubic model gives
much better fit tharthe quadratic one, in terms of determination coefficievit)( as
well as adjusted and predicted values "6f. Unfortunately, eleven third order
interactions were aliased, as shown in Table 4. However, we decidethfmre both
models mentioned above. Thevalues for the quadratic and cubic models are equal to
4.24 (Table 6) and 14.70 (Table 7), respectively, indicating that both models are
statistically significant.
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Table6. ANOVA tablefor log(D50)1 quadratic model

Source Sum of square:  Degrees of Mean square F value p-value
freedom Prob > B
Model 2.8647 14 0.2046 4.2411 0.0021
A-DDAHCI 0.4779 1 0.4779 9.9052 0.0053
B-Kerosene 0.0943 1 0.0943 1.9543 0.1782
C-Time 0.0374 1 0.0374 0.7761 0.3893
D-Stir rate 0.0159 1 0.0159 0.3295 0.5727
AB 0.0981 1 0.0981 2.0328 0.1702
AC 0.0811 1 0.0811 1.6817 0.2102
AD 0.0070 1 0.0070 0.1453 0.7073
BC 0.5822 1 0.5822 12.0664 0.0025
BD 0.1810 1 0.1810 3.7508 0.0678
CD 0.2523 1 0.2523 5.2286 0.0339
A? 0.0065 1 0.0065 0.1354 0.7169
B? 0.4617 1 0.4617 9.5689 0.0060
c? 0.0000 1 0.0000 0.0000 0.9982
D? 0.6400 1 0.6400 13.2640 0.0017
Residual 0.9167 19 0.0482
Lack of Fit 0.8099 10 0.0810 6.8223 0.0040
Pure Error 0.1068 9 0.0119
Corr. Total 3.7814 33

& Statistically significant terms for significance threshold 0.05 are underlined.

The chance thdt values were so high due to the noise which was equal to 0.21
and 0.01%, respectively-values less than 0.0500 indicate that the mtetehs are
significant. Inthe case of quadratic model (Table 6) A, BC, CD, B* were
significant model terms. Values greater than 0.1000 indicate that the model terms are
not significant. At more rigorous significance threshold equad.@d, CD term
beame insignificant. The lack of fiE value of 6.82 implied that the lack of fit
wassignificant, which was unfavorable. The model fitting was expected. There was
only 0.40% chance that a lack of fitvalue this large could occur due to noise.
An adequateprecision parameter value was 8.256 (Table 4). This indicated an
adequate signal, because for a good sigmabise ratio it should be greater than 4.
The predictedY of 0.2063 was much lower than adjust¥d (0.5789). This might
indicate a large blockffect or a possible problem with model and/or data. Therefore,
we decided to analyze the aliased cubic model, with manually removed confounded
terms.

Statistically significant terms at significance threshold 0.05 were identified to be,
starting from tdleast significant, according to tipevalue, I, B?, BC, A’D, CD, A,

A, AB? BD, A%, C%, D, AB, AC, and C. At significance threshold 0.01, several terms
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become insignificant, namely C, AB, AC (Table 7). rAsntioned above, this model
was statistically sigificant. All control parameters values were remarkably better than
in the case of quadratic modehd predictedy of 0.7675 agreed reasonably with the
adjusted’Y of 0.9052 (Table 4). Adequate precision of 15.046 indicated a good
signalto-noise ratio. The lack dit F value of 0.15 implied that the lack of fit was not
significant relative to the pure error.

Table7. ANOVA table for logD50)7 cubic model

Sourc8 Sum of square:  Degrees of Mean square F value p-value
freedom Prob >F°
Model 3.6728 23 0.1597 14.7038 0.0001
A-DDAHCI 0.2484 1 0.2484 22.8710 0.0007
B-Kerosene 0.0046 1 0.0046 0.4271 0.5282
C-Time 0.0660 1 0.0660 6.0776 0.0334
D-Stir rate 0.1164 1 0.1164 10.7175 0.0084
AB 0.0981 1 0.0981 9.0309 0.0132
AC 0.0811 1 0.0811 7.4710 0.0211
AD 0.0070 1 0.0070 0.6455 0.4404
BC 0.5822 1 0.5822 53.6062 0.0000
BD 0.1810 1 0.1810 16.6633 0.0022
CD 0.2523 1 0.2523 23.2284 0.0007
A? 0.1760 1 0.1760 16.2070 0.0024
B? 0.6531 1 0.6531 60.1361 0.0000
C? 0.1605 1 0.1605 14.7787 0.0032
D? 0.7746 1 0.7746 71.3258 0.0000
ABC 0.0296 1 0.0296 2.7223 0.1300
ABD 0.0058 1 0.0058 0.5308 0.4830
ACD 0.0527 1 0.0527 4.8554 0.0521
BCD 0.0193 1 0.0193 1.7792 0.2118
A’B 0.0180 1 0.0180 1.6545 0.2273
A%C 0.0313 1 0.0313 2.8838 0.1203
AD 0.2571 1 0.2571 23.6703 0.0007
AB? 0.2477 1 0.2477 22.8100 0.0008
Al 0.2504 1 0.2504 23.0563 0.0007
Residual 0.1086 10 0.0109
Lack of Fit 0.0018 1 0.0018 0.1487 0.7088
Pure Error 0.1068 9 0.0119
Corr. Total 3.7814 33

2 Aliased terms are removed from model.
b Statistically significant terms for significance threshold 0.05 are underlined.
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Therefore, based on this observation, the median size of talc agglomerates is
affected mainly by the concentration of cationic surfactant DDAHCI as well as
intensity and, to a lesser extent, mixing tinibe gglomerate size is controlled by the
balance beveen agglomerate interaction influenced by capillary forces and the
destructive forces determined by the shearing regime. The former are correlated with
the water and oil interfacial tension which is affected by the presence of surfactant.
Therefore, a gantity of surfactant added to the system is of importance for spherical
agglomeration since also affects the attachment of oil droplets to the mineral particle
surface and spreading on(litaskowski and Yu, 2000 The presence of surfactant can
lower the strength of oil bridges, even to the point that agglomerates can be torn apart
by shear force¢C e b e c i and ;®%kannekeat.,, 2002406, 4mulsification
by mixing of oil in the presence of surfactant lowers the amount of bridging liquid
necessaryor agglomeration of mineral particles, due to the decrease of oil droplets
size (Laskowski and Yu, 200). Therefore, depending on the mixing intensity and
bridging oil amount, the density and volume of the agglomerates can change. At
constant amount of oil added to predetermined amount of the suspension of particles
in water and subjected to mixing witonstant intensity, the oil agglomeration process
takes place in four stages. In the first short stage, pendular oil floccules are formed. In
the second stage, salled zero growth, a complete transition of emulsion droplets
into agglomerates is observefls a consequence, third stage of a rapid growth of
aggregates is achieved. The last stage reflects final forming of agglomerates
(equilibrium period), which, at appropriately intensive mixing, can beceitieer
spherical or formthe spherelike structure Small decrease in the diameter of
agglomerates can be observed due to compression and forcing out water from the
structure of aggregatéBrzymala, 2007)

The equation in terms of actual factors can be employpdettict the response for
given levels of each factor. The DFO response can be expressed by the polynomial
model. In the case of the cubic model, using coded factors, is as follows:

lT@n  pyYgux@dp mrud) ¢ pmO pmdd T8 LD
TnNWY X pnoO p&@ pmdO pgoa pxX @t
TMINPaG opdt pM O MWNNM@Q X 800 we § . (6)

The applied software provides various graphs to help interpreting the model
selected. The best practioghen looking at model graphs to focts on the terms
with significant effects. A graph of the observed (actual) response values versus the
predicted ones helps to detect observations that are not well predicted by the selected
model. The data points should be divided evenly by the diagoainiiboth original
or transformed scale.

The plot of predicted and ebrved values is shown in Fig. On can see that
proposed model predicts reasonably well the experimental results of agglomerates
diameter.
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DesignExpert® Softs )
Loatb( Dtz Predicted vs. Actual

Color points by value of
Log!0{Dismeter)

-0.182
02
-1523

Predicted
»
1

Actual

Fig. 3. Predicted vs. observed values ofd&g for cubic modelR? = 0.7675

The 3D surface plot is a projection of the contour plot giving shape in addition to
the colour and contour. Typical meldgraphs are shown Kigs. 4a and 8. In Figures
4a and 8, the influence of the mixed interactions of significant terms DB and DC, i.e.
stirring rate with oHto-talc mass ratio and stirring rate with stirring time, on diameter
of talc agglomerates were shown. From this 3D plots maximum valD&®fcan be
idertified with increasing mixing intensity and both kerosene amount and process
duration.

vesign-xperty Sorware
Factor Coding: Actual

Original Scale

Diameter (mm)

® Design points above predicted value
°

0657

0.03
X1 = C: Stir time
X2=D: Stirrate *

7

°
0
0.03

X1 = B: Kerosene -
X2 = D: Stir rate

Actual Factors
A: DDAHCL = 2.30
B: Kerosene = 0.72

Actual Factors
A: DDAHCL = 2.30
C: Stir time = 19.00

Diameter (mm)
Diameter (mm)

260000~

~
D: Stirrate (pm) 90 058 B: Kerosene (g/g talc) D: Stir rate (rpm) 1900.00 1350

C: Stir time (min)
a) s b) i

Fig. 4. Exemplary 3D surface plots f@50 response(a) Variable B and D, constant A = 2.30 mband
C = 19 min. (b) Variable C and D, constant A = 2.30 Migwd B = 0.72 g 4

In the case of lo@( $))the analysis was easier (Table 5). The quadratic model was
statistically significant (Table 8); value of 7.85; there is only 0.01% probability that
such high value is due to the noise, with reasonable Imadgisted and predicted
values ofR? equal to 0.8526, 0.7440 and 0.7914, respectively (Table $)eloase of
cubic model, the values are comparable, while in the case of pre(ﬂ?%tedme
decrease isven observed (0.4396). Thus, we decided to analia using the
guadratic model only. Diagnostic parameters of the quadratic model are also sensible
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(Table 8). The lack of fiF-value of 1.24 implies the lack of fit is not significant
relative to the pure error. There is 37.84% chance that a lackFe#/éitue this large
could occur due to the noise. Sighalnoise of 10.687 (Table 5) is much higher
than4, thus the signal is adequate. B, D, BC, BD, CBware identified as significant
model terms at threshold level of 0.05, while at threshold lel/6l.@l BD and A
became insignificant.

Table 8. ANOVA table for lod] $) yesponse quadratic model

Source Sum of squares Degrees of Mean square F value p-value
freedom Prob >F?
Model 3.3952 14 0.2425 7.8496 0.0000
A-DDAHCI 0.0014 1 0.0014 0.0456 0.8331
B-Kerosene 1.5124 1 1.5124 48.9516 0.0000
C-Time 0.0003 1 0.0003 0.0096 0.9230
D-Stir rate 0.5049 1 0.5049 16.3436 0.0007
AB 0.0765 1 0.0765 2.4772 0.1320
AC 0.0145 1 0.0145 0.4706 0.5010
AD 0.1274 1 0.1274 4.1231 0.0565
BC 0.2967 1 0.2967 9.6043 0.0059
BD 0.2136 1 0.2136 6.9125 0.0165
CD 0.3866 1 0.3866 12.5143 0.0022
A? 0.1425 1 0.1425 4.6112 0.0449
B2 0.0236 1 0.0236 0.7632 0.3932
c? 0.0262 1 0.0262 0.8483 0.3686
D? 0.0751 1 0.0751 2.4307 0.1355
Residual 0.5870 19 0.0309
Lack ofFit 0.3401 10 0.0340 1.2396 0.3784
Pure Error 0.2469 9 0.0274
Corr. Total 3.9822 33

& Statistically significant terms for significance threshold 0.05 are underlined.

It follows from abovethat amount of kerosene and stirring rate influence to the
greatest degree a span of the agglomerates size distribution of talc. The agglomeration
process may be considered as a collision between hydrophobic particle and
hydrophobic oil droplet. These ¢isions lead to adhesion as a result of the formation
of pendular oil bridge§Kawashima and Capes, 197Bhysical forns of agglomerates
are dependent on solall-water interface properties, and, to a great éxtamamount
of oil and the hydrodynamics of the process, i.e. intensity and mixing time. There can
be identified three states of agglomeratgendular, funicular, and capillary
(Drzymala, 2007) In the pendular state, oil bridges are formed betweenciessti
bringing them into aggregates in the predominant aqueous phase. Increasing the
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amount of oil, as well as intensive mixing, can resulthaincreased agglomerate
density. Consequentlyhe oil phase starts to dominate and water bridges are formed
in the aggregates (funicular state). In the capillary state, the particles are bound
together with oil only and there are no bridges. Further oil addition to the system
causes formation of a separate oil phase containing the pafficissnala, 2007,)

The polynomial model describing dependence ofdag))s:

1 TICOO p®HT pp P udt pmmO TUELS o8t pmmdO
p8ip pT OO TR M. ()

The plot of predicted and obrsed values is shown in Fig. & can be seen that
proposed model predicts quite well the experimental resutteeaigglomerates PDI.

Typical 3D model graphs for size distrimrt span PDI are shown Figs. 6a and
6b. Based on the results shown in these figures, in the mixed imesacf stirring
time and stirring rate with increasitige kerosendo-talc mass ratio an increase in the
PDI values are achieved.

Log10(PDI) Predicted vs. Actual

Color points by value of
Log10{FDI)
1.188

0237

Predicted
1

Actual

Fig. 5. Predicted vs. observed values of(RPB!) for quadratic modeR? = 0.7914

After determining the logarithmic transformation with reduced cubic model for
D50 and quadratic model for PDI, an optimization study was carried out using the
software. To find optimal conditions of oil agglomeration of talc, the minimum input
values of tle experimental factonseresought in order to achieve minimum values of
PDI, i.e. to obtained more narrow agglomerates size distribution. In case of the second
response parameter, median diameter of agglomerates, the maximum val&é of
was the goal. Sican approach meets requirements for low cost processing and the
size of powder agglomeratg®ietsch, 2005) In general, relatively narrow size
distribution is requested. Thugshe oversized and undersized maal is not
acceptable. Desirable results of size enlargement may be, for example, free flowing,
dustfree granular products with more or less strict requirements on the limits of size
distribution (Pietsch, 1991)It is worth mentioning that factors and responses values
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were investigated ithe range of lower and upper limits of input values only and all
goals to be equally important. With such criteria, numerous reseltsfound with
desirability ranging between®0-0.95. The selected factors values were: 1.61 mg of
DDAHCI and 0.48cn?® of kerosene per gram of talc and the process operating
parameters set as 1200 rpm for 8 minutes of mixinge Phedicted median
agglomeratediameter and size distribution span weréé mm and 4.4, respectively.

X1 = B: Kerosene
X2 = D: Stir rate

Actual Factors
A: DDAHCL =2.30
C: Siir ime = 19.00

D: Stir rate = 2600.00

PDI
PDI

(L
(]
C: Stir time (min) 8 B: Kerosene (g/g talc) D: Stir rate (rpm) 190000 058 B: Kerosene (g/g talc)

a o0

Fig. 6. Exemplary 3D sugce plots for PDiesponse. (a) Variable B and C, constant A = 2.30ng g
and D = 2600 rpm(b) Variable B and D, constant A = 2.30 mgand C = 19 min

Conclusions

In this paper, the experimental parameters for oil agglomeration of talc were designed
using a CCD method.

Four variables of the model investigated were: amount of surfactant (DDAHCI)
(A), amount of kerosene (B), stirring time (C) and the stirring rate (D). The
mathematical model equations were derived for both median size of agglomerates
(D50) and polydispersity span (PDI) usitiie specialized package (Staase 9.0.4
Demo Version).

Logarithmic transformations of the responses pravibetter description of the
model, than untransformed responses. Wassupported by the Bagox plots.

In the case oD50, itwasdifficult to selectthe correct model quadratic ongave

much worse results than the cubic one, but the latter cedtaliased terms. After
removd of confounded parameters from the model, the reduced cubic modeltpdedic
the responses correctly. In this case, significant tewer® A, C, D, AB, AC, BC,
BD, CD, A% B? C?, D? A’D, AB? and A. Considering main effectthe significance
order, calculated bgneans of-testwas amount of DDAHCI >stirring rate >stirring
time. When significance threshottecreasedrom 0.05 to 0.01, C, AB, AC bame
insignificant.

In the case of PDIlthe quadratic model providksatisfactorydescription of the
experimental data. B, D, BC, BD, CD,? Avere significant terms, with kerosene
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amount being more significant main effect than the stirring rate. When significance
thresholddecreaseérom 0.05 to 0.01, CD interaction term lagw insignifcant.

To conclude, it was shown that there were many statistically important factors,
including concentration of cationic surfactant and stirring rate and timé>50r,
concentration of kerosene and stirring rate for PDI, as well as various interacgons, u
to third order forD50, even at significance threshold level equal to 0.01.

Response surfaces can be drawn udimg cubic model in the case dd50
response, and quadratic one in the case of PDI.

Optimal conditions of oil agglomeration of talc were &gl asthe minimum
values of reagents amounts as well as mixing intensity and process time to obtained
themaximum size of agglomerates of a narrow size distribution. It was found that 1.61
mg of DDAHCI and 0.48cn? of kerosene per gram of talc were optimal reagent
dosage and the process operating parameters set as 1200 rpm and 8 minutes of mixing
intensity and time. The predict&b0 and PDI were 0.66 mm and 4.4, respectively.
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