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Abstract: 
Recent developments of acid leaching of titanium concentrates and ores have produced renewed 
industrial and commercial interest. However, the leaching kinetics and mechanism of  
these concentrates and ores had received little attention. This work, therefore, addresses the leaching 
kinetics and mechanism of Ti from a rutile concentrate in sulfuric acid solution. The leaching  
reaction was controlled by diverse parameters like temperature, particle size, acid concentration, 
liquid/solid (L/S) ratio, and stirring speed. The leaching kinetics was investigated using the 
Shrinking Core Model in order to determine the optimum criteria which control the reaction. The 
kinetics analysis showed that the rate of dissolution of Ti increased by increasing reaction 
temperature, L/S ratio, and stirring speed, while it decreased upon increasing particle size. The 
kinetics analysis revealed that the dissolution reaction is controlled by the chemical reaction at the 
rutile particle surface. Applying the Arrhenius relation, the apparent energy of activation Ea for the 
leaching reaction was calculated to be 23.4kJ/mol. A semi-empirical overall rate equation was 
introduced to describe the combined effects of the process variables upon the rate of the dissolution 
reaction: 1 − (1 − x)&/( = 𝑘+		𝐶[/0123]

+.6+( 		(𝑑𝑝)9+.:&6		(𝐿/𝑆)+.=>(		(𝑤)+.@@6		𝑒(9B(C++/DE)𝑡 

Keywords: leaching kinetics and mechanism, titanium, rutile concentrate, leaching design, shrinking 
core model 

1. Introduction 

Reaction kinetics, mechanism, and thermodynamics are fundamental knowledge in the fields of 
science and engineering areas, such as chemical engineering, metallurgy, food processing, 
biotechnology, and petroleum engineering (Faraji et al., 2020). Kinetics can be discussed as a tool for 
investigating the rate of chemical reactions and to understand the different effects of a process 
variables. Kinetics is associated with engineering design and has diverse applications like: estimation 
of the volume and size of the reacting materials, designing the reactors, optimization, controlling, and 
scale-up of the process (Gupta, 2003; Levenspiel, 1999; Sohn and Wadsworth, 1979). The kinetics and 
reaction mechanism of Ti leaching from its bearing minerals, concentrates, ores, and raw materials 
using acids and alkali is of great industrial and economic importance. The leaching processes of Ti 
were extensively investigated in many researches, but the leaching kinetics studies and available data 
are lack. In hydrometallurgical processes, leaching process is carried out either by agitation of a 
particulate solid in a solution containing the leaching reagents required (Agitation leaching) (Huang et 
al., 2016; Jabit and Senanayake, 2018; Zhu et al., 2015), or by causing the solution to pass through a 
porous solid phase that may be a porous rock or a broken material (Heap leaching) (Sachkov et al., 
2019). The most important practical criterion to design a leaching process is to exactly understand the 
chemical reactions taking place and the factors controlling their rates. The kinetics information can 
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only be derived from experimental and observed data and it is affected by many factors such as: 
mineralogy, surface area, product layer formation, reactants concentration, particle size, pulp density, 
agitation, and reaction temperature. The most convenient way to achieve this is to use samples of 
ground ore or mineral of narrow size range (distribution) for a single substance being studied. For the 
process control purposes, it is convenient to fit a mathematical model to the relation curve showing 
dissolution and recovery of the metal values upon leaching as a function of time. The most widely 
mathematical model used for describing the kinetics of fluid-solid (heterogeneous) chemical reactions 
of dense particles is the shrinking core model (SCM) (Chen et al., 2013; Houzelot et al., 2018; Niu et al., 
2013; Wang et al., 2016). The fluid-solid reactions are several and of great industrial importance. 

In this work, the aim was to optimize the kinetics and determine the mechanism of the sulfuric acid 
dissolution of Ti from rutile concentrates in a manner that may differ from other relevant previous 
studies. The kinetics data obtained can be used as a guide for other future works, in general, 
concerning the industrial concept of the sulfuric acid leaching of Ti from ores, rocks, and concentrates. 

2. Materials and Methods 

2.1. Preface 

The start Ti-rutile concentrate in this study was prepared by physical upgrading, grinded, alkali 
roasted, leached with hot water, and the water leach residue (contained Ti) did not dissolve in water. 
The Ti-rutile concentrate consisted of the oxides of Ti, Fe, Si, Al, V, Mn, and Zr. This Ti-concentrate 
composed (in wt.%) of 79% TiO2, 10.05% Fe-oxides, 4.95% MnO, 3.9% SiO2, 1.5% ZrO2, 0.9% Al2O3, 
and 0.35% V2O5. Upon the roasting process using (NaOH/Na2CO3) mixture, these elements’ oxides 
transformed to the corresponding sodium salts of these elements. In the water leaching process, these 
sodium salts dissolved in water at the beginning of leaching, but, some of these elements re-
precipitated again as a solid residue (in situ precipitation) and this conclusion was confirmed in our 
previous related work (Ismael et al., 2020). The elements completely dissolved in water were Si, Al, 
and V. The re-precipitated elements were Ti, Zr, Mn, and Fe. We adopted our previous experimental 
work for the water leaching process to completely attain Ti, Zr, Mn, and Fe in the water leach residue 
under the optimum leaching conditions, in order to prepare pure V2O5 product from the water leach 
liquor. The crystal structure of the Ti-rutile concentrate and structural transformations occurred in the 
roasting, water leaching, and sulfuric acid leaching processes were studied using the XRD technique 
and were illustrated completely in our previous study (Ismael et al., 2020). The water leach residue 
consisted of well-crystalline and identified forms of (Na2Mn2Ti6O16; ASTM Card No., 052-1308 and 
Fe2O3; ASTM Card No., 79-1741). The Ti dissolution reaction from the water leach residue in sulfuric 
acid was supposed to proceed through the reaction (Ismael et al., 2020): 

NaBMnBTi@O&@(N) + 10	HBSOC(ST)
∆
→6	TiOSOC(ST) + MnB(SOC)((ST) + NaBSOC(ST) + HBO(ST) 

The sulfuric acid leaching data reported here, in addition to some data in the previous study, were 
now analysed using the different models of the SCM to describe the kinetics and mechanism of the 
dissolution reaction of Ti. The new data in this work comprises studying the effect of particle size 
(with three different sizes) upon Ti dissolution at different leaching times. The optimum conditions for 
the sulfuric acid leaching process were determined with respect to Ti dissolution efficiency. 

2.2. Kinetics analysis for Ti dissolution and reaction mechanism 

A fluid/solid heterogeneous chemical reaction can be expressed by Eqs 1-3 (Levenspiel, 1999): 
A (fluid) + bB (so1id) = fluid products                                                   (1) 

                or,                  = solid products                                                                         (2) 
                or,                  = fluid + solid products                                                                   (3) 

The dissolution of Ti in sulfuric acid is a typical heterogeneous chemical reaction. So, the 
dissolution reaction kinetics can be expressed by means of the SCM. The SCM considers that the 
particle of the solid mass is spherical and the overall reaction rate-controlling process is the slowest 
step and referred to the most fitting kinetic model. The different kinetic models of the SCM will be 
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discussed in detail. The leaching data obtained was carefully treated to determine the dissolution 
reaction kinetics and mechanism. 

3. Results and discussion 

3.1. Kinetics analysis and reaction mechanism 

The kinetics and mechanism for the dissolution reaction of Ti from a rutile concentrate using H2SO4 
solution were carefully studied using the SCM. Before applying the experimental data to determine 
the reaction kinetics and mechanism, there are some important concepts and criteria should be 
declared as will be stated in the following sections. 

3.1.1. Overview 

It is well evident that the more knowledge about: what the reacting materials are; how they react; and 
what is occurring during the overall reaction, the more we have to establish a proper design and 
economic optimization of the process. The most important of these are the reaction kinetics and 
mechanism. 

There are, generally, four fluid-solid reaction kinetics models; the (i) shrinking core, (ii) 
homogeneous, (iii) pore, and (iv) grain models. The rutile particles, in this study, are essentially 
compact and close grains, thus could be regarded as non-porous particles. As the rutile particles are 
rigid and compact but the particle’s core gradually shrinks during the leaching process, thus, the most 
appropriate reaction model should be the shrinking core. The temperature dependence of rutile 
dissolution can be used to estimate the apparent energy of activation (Ea) and elucidate the kinetics of 
the process. During the leaching of rutile particles with H2SO4 solution, the following main steps may 
be included: (1) diffusion of the fluid (sulfuric acid) particles through the main body of the fluid film 
to the particle surface (rutile), this step is turbulence-sensitive; (2) the chemical reaction of the fluid 
particles with the solid particles at the interface, this step is temperature-sensitive and requires 
relatively low temperature; (3) the diffusion of both the fluid particles and the products formed 
through the product ash layer from and back to the fluid body, respectively, this step is temperature-
insensitive and requires relatively high temperature, and the activation energy Ea of the chemical 
reaction step is usually larger than that for mass diffusion (Gupta, 2003; Nie et al., 2020). Also, some of 
these steps are in series and occur successively, as if any of them is prevented, then the overall 
reaction will not continue to completion. Recently, some studies and review reports have indicated 
that the dissolution rate may be controlled by two different successive steps from the previously 
mentioned steps (Faraji et al., 2020; Li et al., 2010; Tanda et al., 2019; Yang et al., 2014). 

The kinetics analysis for a certain chemical reaction is carefully studied to determine the activation 
energy Ea, and consequently the mechanism, for this reaction. The activation energy is the minimum 
energy required to cause a reaction to occur. In general, in any reaction mechanism, the rate-
determining step is the slowest one, and it determines the overall kinetics of the reaction. In many 
heterogenous chemical reactions, as leaching of ores and concentrates, the overall chemical reaction 
may be the net result of a series of different successive processes which makes the mechanism to be 
mixed-controlled if more than one step control the reaction rate. This is familiar to reactions occurring 
at long time periods. The reaction mechanism is the sequence of events that describes the actual 
process by which reactants become products. 

After fitting the experimental data to all the available kinetics models, the best fit model can be 
determined when it attains some of the following general requirements (Levenspiel, 1999; Li et al., 
2010; Sohn and Wadsworth, 1979): 

a. The line of each relation should be straight with relation coefficient (R2) nearly equals unity. 
b. All the lines should nearly pass the origin, i.e., (have zero-point intercepts). 
c. The film diffusion mechanism can be the rate-controlling step if the homogeneity of the reaction 

mixture, which is affected with stirring speed (turbulence), is the most effective factor 
increasing the reaction rate. 
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d. The rate-controlling step can be confirmed from experimental data of studying the effect of 
variation of reaction temperature and particle size upon the reaction rate at different times (only 
for product diffusion and chemical reaction controls). 

e. The estimated value of Ea, calculated using the Arrhenius relation, may determine the reaction 
mechanism as it is product diffusion, or chemical reaction, or may be a combination of two 
different steps. When Ea is < 20kJ/mol (~4Kcal/mol), the expected mechanism should be 
product diffusion. If Ea is > 40kJ/mol (~10Kcal/mol), the expected mechanism should be 
chemical reaction (Abdel-Aal, 2000; Habashi, 1969; Jackson, 1986). 

f. For the parameter of particle size diameter (r0), if the rate constant k is directly proportional to 
the reciprocal of the particle size diameter (1/r0), therefore, the mechanism is expected to occur 
via chemical reaction control. If the rate constant is directly proportional to the reciprocal of the 
square of particle size diameter (1/r02), therefore, the mechanism is expected to be product 
diffusion control (Adebayo et al., 2003; Ajemba and Onukwuli, 2012; Baba et al., 2009). 

In this study, the kinetics for Ti dissolution reaction from the rutile concentrate in sulfuric acid 
solution can be described by means of the SCM (Chen et al., 2013; Huang et al., 2016; Jabit and 
Senanayake, 2018; Niu et al., 2013; Sui and Zhai, 2014; Tanda et al., 2019; Zhu et al., 2015). The reaction 
process variables studied are: 1) the reaction temperature; 2) the sulfuric acid concentration; 3) the 
rutile particle size; 4) liquid/solid ratio; and 5) stirring speed. The whole variables were studied at 
different reaction time intervals. 

3.1.2. Effect of reaction temperature 

It was found experimentally that for leaching temperatures above 50°C and leaching times more than 
30 min Ti began to hydrolyze and reprecipitate in the sulfate leach solutions. So, Fig. 1 illustrates the 
effect of leaching temperatures (30, 40, and 50°C) at leaching times (10, 20, and 30 min) to show the 
increasing Ti dissolution region. The data in Fig. 1 was used to evaluate the kinetics and mechanism 
for the dissolution reaction of Ti. 

 
Fig. 1. Effect of leaching temperatures (30, 40, and 50°C) on Ti dissolution at (10, 20, and 30 min) leaching times 

(Ismael et al., 2020) 

The SCM takes several forms that can be effectively applied to determine the reaction rate-
controlling step and reaction mechanism for the data in Fig. 1 with its most familiar kinetics models as 
follows: 

3.1.2.1. The surface chemical reaction control 

If the leaching process is controlled by the chemical reaction at the surface of the shrinking particle, 
the following expression of the SCM can be used to describe the leaching kinetics Eq. 4: 

1 − (1 − x)&/( = Kt                                                                     (4) 
where (x) is the fraction of Ti (%) dissolved in sulfuric acid at time t and K is the reaction rate. 
According to Eq. 4 and the experimental data of Ti leaching rate in Fig. 1, the values of [1 − (1 − x)&/(] 
were calculated and plotted against the reaction time t and the results are shown in Fig. 2a. 
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3.1.2.2. The diffusion through the product ash layer control 

If the leaching process is controlled by the diffusion of reactants and products through the product ash 
layer formed during the reaction, the following expression of the SCM can be used to describe the 
leaching kinetics Eq. 5: 

1 − 3(1 − x)
0
[ + 2(1 − x) = Kt                                                              (5) 

According to Eq. 5 and experimental data for Ti leaching rate in Fig. 1, the values of [1 − 3(1 −
x)

0
[ + 2(1 − x)]  were calculated and plotted against the reaction time t, the results are shown in Fig. 

2b. 

 
Fig. 2. The SCM kinetic models: (a) chemical reaction, (b) product diffusion, (c) liquid film diffusion, and (d) 

interface transfer and product diffusion 

3.1.2.3. The liquid film diffusion control 

This model refers to the diffusion of the fluid molecules through the body film of the fluid to the 
surface of the solid as described by Eq. 6: 

X	 = 	Kt                                                                               (6) 
According to Eq. 6 and the experimental data for Ti leaching rate in Fig. 1, the values of (x) were 

calculated and plotted against the reaction time t and the results are shown in Fig. 2c. 
A new model for the reaction to produce a shrinking core was introduced and developed. It 

considers the reaction rate to be controlled by two successive (or mixed) operations namely; the 
interface transfer and the diffusion across the product ash layer (Li et al., 2010; Nie et al., 2020; Tanda 
et al., 2019; Yang et al., 2014). It can be represented as will be now described. 

3.1.2.4. The interface transfer and product diffusion control 

This model is expressed by Eq. 7: 
&
(
	Ln	(1 − x) +	[(1 − x)9&/( − 1] = K	t                                                       (7) 

According to Eq. 7 and the experimental data for Ti leaching rate in Fig. 1, the values of  &
(
	Ln	(1 −

x) +	[(1 − x)9&/( − 1] were calculated and plotted against the reaction time t and the results are 
shown in Fig. 2d. 
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In the calculations and from all previous data for the various SCM models, the mechanism of the 
dissolution of Ti using sulfuric acid can be determined from the plots in Fig. 2. It was found that the 
plots for both the chemical reaction and the product ash diffusion controls are nearly similar with 
more acceptable values of relation coefficient (R2) and with nearly zero-point intercepts when 
compared to the other kinetics models. Thus, and unfortunately, this similarity between the two 
models made it so difficult to determine whether the dissolution mechanism is either controlled by 
chemical reaction or product ash diffusion. The (R2) values for the different kinetic models of the SCM 
at different temperatures are shown in Table 1. 

Table 1. The correlation coefficients (R2) values for the different kinetic models of the SCM at different 
temperatures 

Leaching 
temperature, 

°C 

Kinetic expression, R2 

𝟏 − (𝟏 − 𝐱)𝟏/𝟑 𝟏− 𝟑(𝟏− 𝐱)
𝟐
𝟑 + 𝟐(𝟏− 𝐱) 𝐗 

𝟏
𝟑 	𝐋𝐧	

(𝟏 − 𝐱) +	 [(𝟏 − 𝐱)9𝟏/𝟑 − 𝟏] 

30 0.9811 0.9713 0.8986 0.8513 
40 0.9673 0.9616 0.8525 0.7791 
50 0.9626 0.9575 0.7562 0.5721 

Though, the dissolution mechanism can be confirmed from the activation energy Ea that is 
determined from the Arrhenius relation. The relation between the leaching temperature and the rate 
constant K obtained from Eqs. 4 and 5, for chemical reaction and product diffusion models, can be 
expressed by the Arrhenius expression Eq. 8 (Houzelot et al., 2018; Levenspiel, 1999): 

Kf = Ae9iS/jk                                                                        (8) 
where Kr is the overall rate constant, A is the frequency factor, Ea is the apparent activation energy 
(J/mol), R is the gas constant (8.3144 J/mol.K) and T is the leaching temperature (K). Plotting the 
values of Ln K obtained from Fig. 2a and Fig. 2b at the corresponding leaching temperatures vs 1/T 
gave straight lines with relation coefficients (R2) = 0.868 and 0.912, respectively as shown in Fig. 3. 
Again, the difference between the two values of R2 is not significant. From the slopes of the two plots, 
the corresponding values of Ea for the chemical and product diffusion controls were calculated to be 
23.4 and 32.5 kJ/mol, respectively. These values, till this point, cannot exactly determine the reaction 
mechanism. 

 
Fig. 3. Arrhenius plots for: (a) chemical reaction, and (b) product diffusion-controlled mechanisms 

Although it is reported in literature that if a relatively small change in temperature results in a large 
increase in the reaction rate, then the reaction is chemically controlled, and thus this step ceases to be 
rate-controlling at high temperatures. As shown in Fig. 1, the rate of dissolution reaction of Ti from the 
rutile concentrate increased rapidly from 30 to 50°C which can be considered as a relatively small 
change in temperature (Gupta, 2003), however, the mechanism in the present study is still 
unconfirmed till now. In such a complicated case the reaction mechanism, either it is chemical or 
product diffusion controlled, can be determined and clearly distinguished by studying the effect of 
variation of particle size upon the rate of Ti dissolution reaction. 
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3.1.3.  Effect of particle size 

The effect of particle size was studied in three different fractions: [(-0.250 to +0.125), (-0.125 to +0.075), 
and (-0.075 to +0.025) mm] at different leaching times (10, 20, and 30 min) as shown in Fig. 4a, and the 
fixed experimental conditions were: leaching temperature 50°C, [H2SO4]=9.2 M, L/S ratio 10 cm3/g, 
and stirring speed 250 rpm.. It is clear from Fig. 4a that the dissolution rate of Ti is inversely 
proportional to the particle size and increased with decreasing particle size. The particle diameter (r0) 
used in the kinetics calculations for each particle size fraction was chosen to be the average particle 
size as follows: for the fraction (-0.250 to +0.125) the average is (0.187 mm), for the fraction (-0.125 to 
+0.075) the average is (0.100 mm), and for the fraction (-0.075 to +0.025) the average is (0.050 mm).  

The data in Fig. 4a was applied for both the chemical reaction and product diffusion models 
according to Eqs. 4 and 5, respectively. The plots for both models are shown in Fig. 4b and Fig. 4c, 
respectively. Also, the values of (R2) corresponding to each line for both chemical reaction and 
product diffusion models are shown in Table 2. 

Table 2. Correlation coefficients (R2) values for the chemical reaction and product diffusion kinetic models at 
different particle diameters 

Particle diameter (r0), 
mm 

Kinetic expression, R2 

𝟏 − (𝟏− 𝐱)𝟏/𝟑 𝟏 − 𝟑(𝟏− 𝐱)
𝟐
𝟑 + 𝟐(𝟏− 𝐱) 

0.187 0.9986 0.9291 
0.100 0.9952 0.9612 
0.050 0.9862 0.9653 

 

Fig. 4. Variation of (a) Ti dissolution rate, (b) 1 − (1 − 𝑥)
m
[, and (c) 1 − 3(1− 𝑥)

0
[ + 2(1− 𝑥), with variation of 

particle size at different times 

From the data in Fig. 4b and Table 2, it is now clear that the chemical reaction mechanism is more 
acceptable than the product diffusion where the values of (R2) are greater and the lines nearly pass the 
origin. Also, the relations between Ln k vs 1/r0 (for chemical mechanism) and Ln k vs 1/r02 (for 
product diffusion mechanism) are determined and shown in Fig. 5a and Fig. 5b, respectively. It is also 
clear that the value of (R2) in Fig. 5a is greater than that in Fig. 5b which supports the chemical 
reaction mechanism. Referring to Fig. 3a, the calculated Ea for the dissolution reaction of Ti in sulfuric 
acid solutions from a rutile concentrate is 23.4 kJ/mol, which is in spite of being < 40kJ/mol, but it is 
still in accordance with a chemical reaction mechanism that was reported in some other publications 
(Dreisinger and Abed, 2002; Espiari et al., 2006; Jackson, 1986). For the activation energy value that 
was estimated from the Arrhenius plot, some studies showed that some diffusion-controlled reactions 
have unusually high activation energy. For instance, the activation energy for the diffusion-controlled 
dissolution of Ti and Fe from ilmenite in hydrochloric acid solution was reported to be 48.9 and 53.7 
kJ/mol, respectively (Tsuchida et al., 1982). Also, Olanipekun 1999 reported the diffusion-controlled 
dissolution of Ti and Fe from a Nigerian ilmenite ore by hydrochloric acid and calculated the Ea to be 
67.1 kJ/mol for Ti and 62.4 kJ/mol for Fe, respectively. Similarly, the Ea for the diffusion-controlled 
hydrochloric acid leaching of Fe from bauxite varied from 62 to 79 kJ/mol for different particle size 
fractions (Paspaliaris and Tsolakis 1987). Wang et al., 2013 reported a process to decompose Ti slag by 



145 Physicochem. Probl. Miner. Process., 58(1), 2022, 138-148 
 

using the NaOH/KOH binary molten salt. The kinetics investigation indicated that the decomposition 
of the slag is controlled by mass diffusion in the residual layer and the Ea is 43.1 kJ/mol. On the other 
hand, other studies showed that some reactions with chemical-controlled mechanism have unusual 
low activation energies. For example, Nayl et al., 2009 reported the digestion of an ilmenite slag in 4 M 
NH4OH solution at a temperature of 150 °C, the slag decomposed with the formation of ammonium 
titanate which was readily hydrolyzed in hot water to high purity anatase. Analysis of the reaction 
kinetics found that the reaction was a chemical-controlled process with Ea equaled 27.8±1.6 kJ/mol. 
On closer examination, it appears that the rate-controlling mechanism of heterogeneous dissolution 
reactions is sometimes better predicted from plots of the kinetic equations rather than from the 
activation energy value. In some instances, the same mechanistic information is derivable from both 
variables (Olanipekun 1999). The reaction mechanism is now confirmed to be controlled by the surface 
chemical reaction, so, from the slope of Fig. 5a, the reaction order with respect to particle size was 
found to be (-0.518). 

 
Fig. 5. The relationship between (a) ln(k) vs 1/r0 and (b) ln(k) vs 1/r02 

3.1.4.  Effect of sulfuric acid concentration 

The effect of sulfuric acid concentration was studied for different concentrations: (1.8, 2.3, 3.0, 4.6, 6.1, 
and 9.2 M) at different leaching time intervals. The experimental data obtained were applied to the 
chemical reaction model and the results are shown in Fig. 6a. A relation between Ln k vs Ln [H2SO4] 
was constructed which gave a straight line with a slope equals (0.803) which represents the reaction 
order with respect to sulfuric acid concentration Fig. 6b. 

 

Fig. 6. Variation of (a) 1 − (1 − 𝑥)
m
[ with variation of [H2SO4] at different times, and (b) ln(k) vs ln([H2SO4]) for 

chemical reaction control 

3.1.5.  Effect of liquid/solid (L/S) ratio 

The effect of L/S ratio was studied for different ratios: (2, 4, 6, 8, and 10, cm3/g) at different leaching 
time intervals. The experimental data obtained were applied to the chemical reaction model and the 
results are shown in Fig. 7a. A relation between Ln k vs Ln L/S ratio was constructed which gave a 
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straight line with a slope equals (0.793) which represents the reaction order with respect to L/S ratio 
as shown in Fig. 7b. 

 

Fig. 7. Variation of (a) 1 − (1 − 𝑥)
m
[ with variation of L/S ratio at different times, and (b) ln(k) vs ln(L/S) for 

chemical reaction control 

3.1.6.   Effect of stirring speed 

The effect of stirring speed was studied for different speeds: (150, 250, and 350 rpm) at different 
leaching time intervals. The experimental data obtained were applied to the chemical reaction model 
and the results are shown in Fig. 8a. 

 

Fig. 8. Variation of (a) 1 − (1 − 𝑥)
m
[ with variation of stirring speed at different times, and (b) ln(k) vs ln(stirring 

speed) for chemical reaction control 

A relation between Ln k vs Ln stirring speed was constructed which gave a straight line with a 
slope equals (0.668) which represents the reaction order with respect to stirring speed as shown in Fig. 
8b. From all of the previous statistical and graphical calculations, the combined effects of the process 
variables on the dissolution kinetics of Ti from a rutile concentrate using sulfuric acid can be 
expressed by the overall rate equation, Eq. 8 (Ajemba and Onukwuli, 2012). 

1 − (1 − x)&/( = k+		C[pBqrC]S 		(dp)u		(L/S)v		(w)x		e(9iS/jk)	t	                               (8) 

where the constants a, b, c, and d are the reaction orders with respect to sulfuric acid concentration, 
particle diameter, L/S ratio, and stirring speed, respectively. Substituting the values calculated for 
these constants and the value calculated for activation energy, the semi-empirical overall rate equation 
becomes as follows, Eq. 9. 

1 − (1 − x)&/( = k+		C[pBqrC]+.6+( 		(dp)9+.:&6		(L/S)+.=>(		(w)+.@@6		e(9B(C++/jk)	t	                       (9) 

4. Conclusions 

The leaching kinetics and mechanism of Ti from a rutile concentrate in sulfuric acid solution was 
carefully investigated. The leaching reaction was affected by temperature, particle size, acid 



147 Physicochem. Probl. Miner. Process., 58(1), 2022, 138-148 
 

concentration, liquid/solid ratio, and stirring speed. The leaching kinetics was investigated using the 
Shrinking Core Model in order to determine the optimum criteria which control the reaction. The 
kinetics analysis revealed that the dissolution reaction is controlled by the chemical reaction at the 
rutile particle surface. Applying the Arrhenius relation, the apparent energy of activation Ea for the 
leaching reaction was calculated to be 23.4kJ/mol. A semi-empirical overall rate equation was 
introduced to describe the combined effects of the process variables upon the rate of the dissolution 
reaction. 
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