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Abstract: The influence of pure and mixed culture of A. ferrooxidans and A. tiooxidans as well as different 

pulp density (1 and 2%) of LCD panels on the In and Sn bioleaching efficiency was investigated. Pulp 

density is one of the factors affecting the metals extraction efficiency during biological leaching. It has 

been shown that lower pulp density results in higher indium and tin dissolution. The A. ferrooxidans 

bioleaching system showed better metal extraction results than A. thiooxidans, especially for tin, 

indicating the special role of iron and A. ferrooxidans in tin recovery. The highest leaching rate of both 

indium (94.7%) and tin (98.2%) was obtained using iron and sulfur medium inoculated with mixed 

bacteria and a pulp density of 1% w/v. 
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1. Introduction 

Indium belongs to the group of critical raw materials (CRM - Critical Raw Materials) as one of the 

elements with a high supply risk for the European Union (EU) and a significant impact on the 

development of strategic EU sectors (renewable energy, electric mobility, aviation and digital 

technologies) (COM, 2020). Most of the indium (over 55%) is used to produce Indium-Tin-Oxide (ITO) 

(Uebersachar et al., 2017), a component of LCD (Liquid-Crystal Display) touch screens, televisions, 

computers and other electronic components, which are produced in hundreds of millions of pieces 

annually. Depending on the manufacturer, the indium content in LCD screens ranges from 100-300 mg 

In/kg of glass, while in primary sources, such as sphalerite or chalcopyrite ores, it ranges from 10 to 20 

mg In/kg (Yang, 2012; Zhang et al., 2015). Despite extensive research, a complete LCD recycling cycle 

has not been developed, indium is not recovered and the recycling of used LCD screens has become a 

real challenge. The process of indium and tin recovery from LCD panels has been studied by many 

different methods of dissolution, extraction, separation, and purification (Zhang et al., 2015; Amato and 

Belonchini, 2018), such as the leaching process (Rochetti et al., 2015; Qin et al., 2021), solvent extraction 

(Ruan et al., 2012; Pereira et al., 2018) selective precipitation or a method of vacuum-chlorinated 

separation (Ma et al., 2012). 

Chemical leaching is characterized by a high recovery efficiency in a short time (e.g. 100% recovery 

of indium in a one-step 2M H2SO4 leaching process, 80 °C for 10 minutes) (Rocchetti et al., 2015), 

however, requires strong acids and/or high temperature. The search for effective solutions, apart from 

classic mechanical, hydrometallurgical and pyrometallurgical methods, also includes bio-
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hydrometallurgical methods, using the potential of microorganisms. Biological methods are an 

attractive alternative, they do not require extreme parameters and offer low cost and environmentally 

friendly benefits (Vestola et al., 2010; Willner et al., 2015; Sedlakova-Kadukova et al., 2017). 

Microorganisms are capable of transforming many metals found in many valence states by catalysing 

redox reactions. Bacterial strains most commonly used in bioleaching on a laboratory scale and in 

industrial applications belong to the genus Acidithiobacillus. They can obtain the oxidizing energy both 

reduced sulfur compounds and the ferrous ion. There is an increasing amount of new results on the 

utilization of acidophilic microorganisms in the bioleaching of various types of metal-bearing wastes 

(Printed Circuit Boards - PCBs, Ni-Cd batteries, Li-ion batteries, spent refinery catalysts) with high 

efficiency of metals bioleaching (> 90%) (Sedlakova-Kadukova et al., 2017; Willner and Fornalczyk, 2013; 

Nagar et al., 2021), including valuable In extraction from LCD (Willner et al., 2018; Jowkar et al., 2018; 

Xie et al., 2019; Rezaei et al., 2018). 

Previously, both pure and mixed cultures of Acidithiobacillus tiooxidans and Acidithiobacillus 

ferrooxidans were used in the recovery of indium, which derive energy from the chemical oxidation of 

elemental sulfur (they produce sulfuric acid) or oxidation of iron (II) (Jowkar et al., 2018; Xie et al., 2019). 

Indium bioleaching has been shown to have a good metal recovery potential from spent LCD compared 

to chemical leaching. Indium was recovered from waste LCD at 100% in 15 days, with adapted A. 

thiooxidans (LCD density 1.6% w/v) (Jowkar et al., 2018) or even shorter - in 6 days (Xie et al., 2019) 

using adapted sulfur Acidithiobacillus (LCD density 1.5% w/v) while the chemical leaching was 74% and 

8% respectively. It was also found that 100% efficiency was achieved when adapted A. ferrooxidans (LCD 

density 2.5% w/v, 10 days) was used, however Xie et al. found that they did not obtain any leaching of 

indium in the presence of A. ferrooxidans. In systems with non-adapted A. ferrooxidans bacteria, their 

growth was stopped (due to the toxicity of the LCD powder) and the recovery of indium did not exceed 

10% (Rezaei et al., 2018). Adaptation is a key factor in ensuring the effectiveness of indium leaching, 

however, reports by various authors indicate that high efficiency was obtained both in the presence of 

pure bacteria that derive energy from the biooxidation of inorganic compounds containing reduced S 

as well as Fe2+. It has not been clearly established which bacterial strains and oxidizing agents play a 

leading role in indium bioleaching.  

Previous literature analysing the possibility of recovering metals from LCD material using bacterial 

leaching is significantly limited. The works relating to bioleaching (Jowkar et al., 2018; Rezaei et al., 

2018, Xie et al., 2019) did not take into account the presence of tin, which in 10% as SnO2 is a component 

of ITO (another 90% is In2O3) in the LCD material. Jowkar et al. focused on the recovery In and Sr from 

LCD screen sources from laptops, where Sr constituted 0.2% of the material. Other researchers (Rezaei 

et al., 2018, Xie et al., 2019) analysed only the possibility of In recovery. There is therefore no publications 

for Sn, bound in the ITO material with In. The knowledge about the behaviour of tin is particularly 

important from the point of view of the possibility of its co-dissolution in the biooxidation of ITO 

components and the effective separation of this metal in further purification processes. Our previous 

work (Willner et al., 2018) with mixed bacteria of A. thiooxidans and A. ferrooxidans showed that presence 

of ferrous/ferric ions plays the important role in tin extraction from LCD. Tin was leached with an 

efficiency of more than 90% in both biological and control systems from the 9K medium, while in H2SO4 

solution, the tin efficiency did not exceed 10%. It was also confirmed that 55% of indium was transferred 

to the solutions within 35 days (Willner et al, 2018). The aim of this study was to assess the effectiveness 

of In and Sn bioleaching with Fe or S substrates through acidophilic activity of bacteria. Various pure 

and mixed culture of A. ferrooxidans and A. thiooxidans strain, pulp density, (1%, 2% w/v) and contact 

time were tested. 

2. Materials and methods 

2.1. Material preparation 

The LCD screens were sourced from a variety of used cell phones in the market. The disassembly of the 

LCD panels was manual, which allowed for the separation of the research material from the remaining 

components of the phones. The LCD panel is an element containing two layers of glass substrates filled 

with a conductive ITO layer, coloured pigments and thin film transistors. The outer sides of the 

insulating glass are covered with a layer of polarizing foils that adhere tightly to the glass, the separation 
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of which is significantly difficult. One of the ways to separate the film from the glass is by mechanical 

processing. However, due to the significant loss of glass material during grinding, which does not 

separate from the polarizing film, an effective wet separation method was used applying NaOH 

solution (Ueberschaar et al., 2017). The glass panels were cut into pieces approximately 1x1 cm and 

placed in a beaker with 2M NaOH for 20 hours at ambient temperature. After this time, all material was 

filtered off, washed and dried at 70 °C for 1h. In this way, two material fractions were obtained: glass 

separated from ITO and the material of the polarizing foil with the remainder of non-separated glass 

(Fig. 1). To reduce glass loss, the material was washed again with NaOH solution recovered from the 

first washing phase at 70 °C for 1 hour. In this way, a foil-free glass fraction was obtained, which, after 

washing and drying, was ground by a knife mill (ChemLand FW135, Poland). The ground materials 

were sieved in an electromagnetic sieve shaker (Multi-Serw-Morek LPzE-2e, Poland) equipped with 

sieves (2.0-0.1 mm). Material with a grinding of <0.1 mm was used for further bioleaching tests, as 

shown in Fig. 1c. 

 

Fig. 1. LCD material obtained after treatment of 2M NaOH: a) Polarizing film contaminated with glass; b) 

separated fraction of glass from ITO, c) ground fraction of LCD glass < 0.1 mm 

2.2. Bioleaching 

Biological leaching was performed with the pure strain and a mixed culture of A. ferrooxidans and A. 

thiooxidans. Pure cultures of the Acidithiobacillus ferrooxidans strain SmolnikLC and A. thiooxidans strain 

SmolnikF were obtained from the Institute of Geotechnics of the Slovak Academy of Sciences in Košice. 

Both bacteria were recovered from the mine's acid drainage from a copper mine near Smolnik in 

Slovakia. The experiments were carried out in the media 9K and Waksman and Joffe for A. ferrooxidans 

and A. thiooxidans, respectively, and with a medium consisting of (g/L): (NH4)2SO4-2.0; KCl-0.1; 

MgSO4∙7H2O-0.25; KH2PO4-0.25; FeSO4∙7H2O-44.2, S0-10, for mixed A. ferrooxidans and A. thiooxidans.  

Due to the limited efficiency of In and Sn bioleaching at S/L ratio 2.5% (w/v) (Willner et al., 2018), 

we reduced the pulp density to 1% and 2% (w/v). Erlenmeyer flasks containing ground LCD glass 

samples and a suitable medium for pure and mixed bacteria were inoculated with 10% (v/v) of the 

bacteria strain (initial pH = 2.0-2.2) and kept at 30 °C in a thermostat during experiments. Bioleaching 

tests lasting 35 days were carried out and in parallel, control tests were carried out under sterile 

conditions in a medium without bacteria. All biological and control experiments were performed in a 

least in duplicate. Regular measurements of pH, oxidation-reduction potential (Eh) and metals 

concentration were performed. The adaptation process with indium and tin compounds was carried 

out for pure A. ferrooxidans and A. thiooxidans for 10 weeks. Adaptation was carried in 190 mL of nutrient 

medium with addition 10 ml of pure culture of A. ferrooxidans or A. thiooxidans, with a dose of ground 

LCD material (≤ 0.1 g) added every 3 days. 

5 ml of effluent were regularly collected and filtered for analysis of indium and tin concentrations in 

chemical and biological leaching solutions. The metal content of each filtrate was determined by 

Microwave Plasma Emission Spectroscopy (MPAES) (Agilent MP-AES 4200). Regular measurements of 

the oxidation-reduction potential (Eh) (CP-505, electrode ERPt-13, Hydromet, Poland) and pH (pH-

meter CP-505, electrode ERH-11 Hydromet) were performed. In order to determine the qualitative 

composition of the LCD material during the experiment, a scanning electron microscope (SEM) 

equipped with Hitachi S 4200 and the method of microanalysis (EDS) was performed. Table 1 and Fig. 

2 show the characteristics of MPAES and SEM-EDS of the ground LCD material. The glass sample 
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consists mainly of amorphous silicon (Toache et al., 2020; Willner et al., 2021), indium and tin additives 

and other elements (e.g. Cu, Pb, Al, Sr, Ni, Cr, Mn) described in more detail in the previous publication 

(Willner et al., 2021). 

Table 1. Metal content in the ground LCD material 

Metal  In Sn Cu Pb Al 

Content, % 0.0906 0.0250 0.0097 0.0009 0.3460 

 

 

Fig. 2. SEM-EDS analysis of the 0.1 mm LCD glass fraction 

3. Results and discussion 

3.1. Bioleaching with pure A. ferrooxidans and A. thiooxidans - pH and ORP effect 

Bioleaching of indium and tin from LCD panels by pure culture of A. ferrooxidans, A. thiooxidans and 

their mixture were tested for 35 days. During the bioleaching process, the microbial oxidation of ferrous 

ions to ferric ions and elemental sulphur to sulfuric acid occurs as follows: 

S0 + H2O + 1.5O2 
𝐴.𝑡ℎ𝑖𝑜𝑜𝑥𝑖𝑑𝑎𝑛𝑠
→            H2SO4                              (1) 

2Fe2+ + 1/2 O2 + 2H+ 
𝐴.𝑓𝑒𝑟𝑟𝑜𝑜𝑥𝑖𝑑𝑎𝑛𝑠
→            2Fe3+ + H2O          (2) 

Fig. 3 shows the change in pH during bioleaching with pure bacteria and in control tests. The 

acidification of the leaching solutions and the decrease in pH are visible for both A. ferrooxidans and A. 

thiooxidans systems. In the environment with bacteria favoring the oxidation of S0 to H2SO4 (reaction 1) 

the drop in pH is faster than in A. ferrooxidans, especially at a lower pulp density (1%), where the final 

pH value was 1.7. The acidification of the environment with A. ferrooxidans is mainly caused by the 

hydrolysis reactions and precipitation of iron (III) compounds in the form of jarosite (especially in the 

pH range from 1.8 to 2.7), where the precipitation of jarosite is an acid-forming reaction (Grishin et al., 

1989): 

3Fe3+ + X+ + 2HSO4
- + 6H2O → XFe3(SO4)2(OH)6 + 8H+                             (3) 

where X is a K+, Na+, NH4
+, or H3O+. 

Apart from NH4
+ (ions in the 9K medium), monovalent cations as Na+, K+, contained in the panels 

of thin-film transistor liquid crystal display (TFT-LCD) in a form of Na2O, K2O (Kae-Long et al., 2009) 

contribute to the formation of ferric hydroxyl salts, which was visible in leaching system in the form of 

yellow-brown phase. At the same time, the pH of the control samples ranged from 2.1 to 2.4 (Fig. 3b) 

In the systems with A. ferrooxidans, the concentration of Fe3+ (reaction 2) increases with the progress 

of the reaction and the Eh potential increases also (Fig. 4). The growth of Eh is from around 400 mV to 

around 660 mV for pure A. ferrooxidans. However, the Fe2+ biooxidation process is slightly faster when 

the pulp density is 1%. Ferrous ions presented in bacterial leaching solutions are regenerated in reaction 

of biooxidation to Fe3+ catalysed by the bacteria. The Eh value in the control samples, in which Fe (II) 

oxidation occurs spontaneously under the influence of atmospheric oxygen, did not exceed 360 mV. 
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Fig. 3. Changes in the pH value over time and the diversity of pulp density (1% w/v and 2% w/v): a) pure  

A. ferrooxidans (Af) and A. thiooxidans (At); b) control samples 

 

Fig. 4. Changes in Eh value over time and differences in pulp density (1% w/v and 2% w/v) with bacteria A. 

ferrooxidans and control samples 

3.2. Effect of pulp density with pure bacteria 

Our research concerns the influence of pulp density due to the importance of this factor. It is known 

that increasing the pulp density in the bacterial leaching process inhibits the kinetics and rate of metal 

extraction (Rezaei et al., 2018; Valix, 2017; Brandl et al., 2001). The results obtained so far clearly indicate 

that the high bio-recovery efficiency of In was obtained by using a pulp density in the range of 1-1.6% 

(w/v) (Jowkar et al., 2018; Rezaei et al., 2018, Xie et al, 2019). Increasing the pulp density to 2.5% 

significantly lowered the cell concentration of bacteria and biooxidation, reducing the recovery 

efficiency of this metal (Willner et al., 2018, Rezaei et al. 2018). Therefore, we reduce pulp density to the 

value: 1% and 2% w/v. Fig.s 5 and 6 compares the In and Sn bioleaching efficiency of LCD waste over 

35 days with the variable pulp density for the systems with pure bacteria. Higher extraction efficiency 

of indium and tin was found when the lower pulp density was used - 1% (w/v) for both pure of A. 

thiooxidans and A. ferrooxidans cultures. Increasing the pulp density to 2% (w/v) significantly reduces 

the In and Sn extraction. Pulp density during bacterial adaptation is one of the key factors affecting the 

efficiency of indium extraction in the bioleaching process. The bacterial cell concentration was 

significantly reduced when pulp density increased from 0.5 w/v to 2.5% w/v, which limited cell 

multiplication, and as suggested by the author (Rezaei et al. 2018), there was a decrease in bacterial 

productivity by inactivating its enzymes due to the formation of metal ions of complexes with protein 

molecules in bacteria. Within 35 days, the highest indium leaching rate of 84.7% was obtained for pure 

A. ferrooxidans, while it was 61.3% in A. thiooxidans systems. An equally high degree of indium recovery 

(100%), obtained in shorter time (10 days) with adapted ferric bacteria, is presented in (Rezaei et al., 

2018), however, these results do not coincide with the results of other authors (Xie et al., 2019; Jowkar 
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et al., 2018), who bioleaching indium is attributed to A. thiooxidans. Xie et al. and Jowkar et al. achieved 

100% leaching efficiency of indium in the presence of A. thiooxidans after 8 days and 15 days, 

respectively. H+ ions have been recognized to play an important role in the dissolution of indium, 

however H+ release is not the only factor in effective indium leaching (acid leaching cannot fully wash 

the indium out of the LCD powder) and bacterial involvement is necessary for a high leach efficiency 

(Xie et al., 2019). As suggested in the earlier work (Willner et al., 2018), iron has a significant influence 

on Sn extraction, which is reflected in the obtained results. Within 10 days, 83.9% and 47.3% of Sn were 

dissolved in A. ferrooxidans and A. thiooxidans, respectively (pulp density 1% w/v) – Fig. 5 and 6. Fe3+ 

ions in aqueous solutions of ferric chloride or ferric sulfate are used as an effective medium to 

completely detinning a scrap in just a few minutes at room temperature (C 22 B 25/06 patent). The 

reaction involving the tin bound to In in the LCD powder can be similar to A. ferrooxidans system based 

on oxide-reduction Fe2+/Fe3+ (reaction 2), increased Fe3+ concentration in the solution dissolves out tin 

preferentially over time, which manifests itself faster extraction of Sn in relation to In (Fig. 5). 

 

Fig. 5. Bioleaching efficiency of indium (a) and tin (b) with A. ferrooxidans for different pulp densities 

 

Fig. 6. Efficiency of indium (a) and tin (b) bioleaching with A. thioxidantes for different pulp densities 

3.3. In and Sn bioleaching efficiency with mixed bacteria 

Based on the obtained results of the research on the higher In and Sn bioleaching efficiency with the use 

of a lower density of LCD glass pulp, further studies with the participation of mixed bacteria were 

carried out for the pulp density 1% w/v case. The change in Eh and pH over time, shown in Fig. 7, is 

similar to that for pure strains, but the decrease in pH was faster, and the degree of acidification was 

lower. The visible initial increase in pH for both pure A. ferrooxidans and A. thiooxidans (Fig. 3a) and 

mixed bacteria (Fig. 7) is related to the chemically neutral nature of the tested material. LCD powder 

dissolved in distilled water showed a pH in the range of 7 (Vakilhap et al., 2016; Rezaei et al., 2018), 

which, in combination with the consumption of protons and oxygen by A. ferrooxidans and the time 

needed for S0 oxidation for A. thiooxidans, results in an increase in pH in the initial phase of bioleaching. 

The decrease in pH is accompanied by an increase in Eh for 10 days in the range of 447-628 mV. 
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The leaching efficiency results are shown in Fig. 8. The tin leaching kinetics is much shorter - 87.3% 

of Sn was recovered within 10 days, while 33.2% of In was recovered. In the LCD powder, both metals 

exist as oxides, but the dissolution of Sn is faster, releasing this metal first. Therefore, it is possible that 

Sn can be partially separated from In in the initial phase of bioleaching. The maximum tin leaching was 

98.1% (15th day). Indium bioleaching was gradual and the maximum amount of indium leached was 

94.7% on day 35. Equally positive results of indium leaching with mixed bacteria were presented in (Xie 

et al, 2019), where the indium extraction effect was 78% (8 days). The reduction of pulp density from 

2.5% (Willner et al., 2018) to 1% w/v significantly improved the efficiency of bioleaching of metals with 

mixed bacteria. The interaction of the two strains A. ferrooxidans and A. thiooxidans increases the 

dissolution kinetics of metals, ensuring faster acidification of the environment, and the Fe2+/Fe3+ redox 

pair in the leaching system supports the biological oxidation and dissolution of metals, in particular tin. 

In the works of many authors, a higher efficiency of metal leaching with the use of mixed bacteria is 

cited. Iron and sulfur-oxidizing cultures are important for effective degradation of natural minerals and 

high metal extraction rates, e.g. copper from chalcopyrite (where ferric iron is an oxidizing agent; and 

to remove elemental sulfur formed on the mineral surface), (Fu et al., 2008; Qui et al., 2005; Akcil et al., 

2007) but also for the recovery of valuable metals from urban mining waste such as electronic scrap 

(Ivanus, 2010; Ilyas et al., 2007). 

 

Fig. 7. Changes in pH and Eh values over time with mixed bacteria and control samples (pulp density 1% w/v). 

 

Fig. 8. Indium and tin bioleaching efficiency with mixed bacteria 

4. Conclusions 

Bioleaching of indium and tin from LCD panels was carried out with different efficiency depending on 

the pulp density (1% and 2% w/v) and the use of pure or mixed bacteria. When a higher pulp density 
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was used, the kinetics and rates of metal extraction were inhibited when using the pure strain, therefore 

1% w/v pulp density is an appropriate value for efficient bioleaching In and Sn from LCD material. 

Mixed cultures containing iron and sulfur oxidizing bacteria were more productive than a single pure 

culture. 98.2% of Sn and 94.7% of In were washed out with mixed bacteria (1% w/v), while for A. 

ferrooxidans and A. thiooxidans it was 84.7% for In, 97.3% for Sn and 71% for In and 66.9% for Sn, 

respectively. A. ferrooxidans and Fe3+ ions lead to a faster and more complete extraction of Sn than would 

be expected with A. thiooxidans. Therefore, the rapid dissolution of tin suggests the possibility of its 

successful separation and recovery at the beginning of bioleaching using more effective oxidizing agents 

such as iron oxidizing bacteria. 
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