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Abstract: Pyrite (FeS2) is known as a sulfide that provides energy for various pyrometallurgical 
processes (fusion and conversion). There are several studies related to the evaluation of pyrite oxidation 
mechanisms at high temperatures, obtaining discrepancies in the products generated. In our work, the 
novelty of our research would be to obtain the thermochemical oxidation mechanism of FeS2 by using 
conventional thermogravimetric methods. The oxidative roasting of pyrite from 550 to 800°C was 
analyzed for an oxygen concentration of 5.07 to 28.06 kPa of oxygen and particle size between 12.3 to 
33.8 microns. The results showed that the pyrite proceeded by sequential roasting: first, it produced an 
intermediate compound, pyrrhotite (Fe7S8), which was later oxidized to generate hematite (Fe2O3), both 
stages validated by weight loss of the sample as well as by analysis by DRX. Each stage had a different 
roasting speed as it was also influenced differently by different parameters. The temperature and 
particle size favored the rate of pyrrhotite generation, and the oxygen concentration favored the rate of 
hematite formation. The first-order kinetic equation ln (1-XPy) represented the roasting of the first stage 
(FeS2 → Fe7S8), with a calculated activation energy of 70.1 kJ/mol. The order of reaction was 0.5 
concerning the partial pressure of oxygen and inversely proportional to the initial particle radius. 
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1. Introduction 

1.1. Usefulness of pyrite 

Copper sulfide concentrates such as enargite (Cu3AsS4) and chalcopyrite (CuFeS2) are accompanied by 
various compounds mainly consisting of pyrite (FeS2), pyrrhotite (Fe7S8), among others. Iron sulfides 
are used to provide energy (in the form of heat) to thermal processes such as roasting and smelting of 
concentrates. Therefore, it is of relevance the knowledge of the parameters that exert a greater amount 
of energy as well as an acceleration in the oxidation rate of these compounds. One of these parameters 
is the calculation of the total equilibrium pressure of sulfur gas on pyrite validated from 325 to 743°C 
(Hong, 1998), given by the following expression:  

log$% 𝑃 = 16.2(±0.21) − $12%%(±$1%)
3

                                                       (1) 

where P is the total pressure of the sulfide gas over the pyrite (bar) and T is the temperature (kelvin). 
Otherwise, the melting point of FeS2 is recorded as 743°C (Boyabat et al., 2004), while Fe7S8 would have 
a melting point given between a temperature range of 988 to 1187°C (Kubaschewski, 1982). These two 
values are so far not fully validated by the technical literature. 

The chemical mechanisms governing the transformation of these sulfides are also of importance. 
However, there are several studies with different experimental techniques used that have shown 
discrepancies in the analyses above. Table 1 summarizes several investigations showing different results 
in the pyrite oxidation in similar ranges of oxygen concentrations and temperatures to generate different 
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compounds of non-stoichiometric pyrrhotite (Fe(1-x)S), hematite (Fe2O3), magnetite (Fe3O4) or a mixture 
of them. 

Table 1. Summary of research on oxidative pyrite roasting at different temperatures. 

Total or partial reaction 
mechanism 

Atmosphere/temperature condition 
Maximum 

temperature 
Reference 

FeS2 → Fe2O3 Air (21% O2 v/v)/2-6 K/min T>480°C (Schorr et al., 1969) 
FeS2 → Fe2O3 Air (21% O2 v/v)/2.5 K/min 

T~503°C (Dunn et al., 1989ab) 
FeS2 → Fe2O3 T<515°C 
FeS2 → Fe2O3 O2 concentration=2% v/v 

T<800°C (Groves et al., 1987) 
FeS2 → Fe2O3 + traces Fe3O4 T>800°C 

FeS2 → FeS2 + Fe(1-x)S → Fe2O3 O2 concentration=5% v/v T=525°C (Hansen, 2003) 

FeS2 → Fe3O4 → Fe2O3 O2 concentration=1-5% v/v T=700-900°C 
(Nishihara and Kondo, 

1959) 

FeS2 → Fe3O4 (>85%) + Fe2O3 O2 concentration=3% v/v T=1227°C 
(Srinivasachar et al., 

1990) 
FeS2 → Fe3O4 + traces Fe2O3 O2 concentration=5% v/v T=1038-1454°C (Huffman et al., 1989) 

FeS2 → Fe2O3 Air (21% O2 v/v) 
T<550°C (Jorgensen and Moyle, 

1982) FeS2 → Fe(1-x)S → Fe2O3 T>550°C 
FeS2 → Fe2O3 + traces Fe3O4 

Air (21% O2 v/v) T=610°C 
(Prasad et al., 1985) 

FeS2 → Fe(1-x)S → Fe2O3 
FeS2 → Fe(1-x)S → Fe3O4 

FeS2 → FeS 
Air (21% O2 v/v) 

T=173-261°C (Mitovski et al. 2015) 
FeS → Fe3O4 
FeS → Fe2O3 

T=275-596°C 

FeS2 → FeO + Fe2O3 + Fe3O4 O2 concentration variable 
T=1200-1600°C 

(McLennan et al., 2000) 
Fe(1-x)S → FeO → Fe3O4 → Fe2O3 Reducing atmosphere 

FeS2 → Fe(1-x)S 
O2 concentration=100-1000 ppm + CO2 

T=484-538°C (Hong and Fegley, 1997) 
FeS2 → Fe(1-x)S + Fe3O4 T=392-460°C 

FeS2 + C → Fe2O3 + Fe3O4 
(lower amounts) 

Air (21% O2 v/v) T=300-757°C 
(Komraus et al., 1990) 

FeS2 + 2CO2 → Fe3O4 + Fe2O3 + 
COS(g) + SO2 

CO2 atmosphere T>500°C 
(Bhargava et al., 2009) 

FeS2 → Fe3O4 + Fe2O3  
O2 concentration variable + 

pulverized coal 
T=1227°C 

(Helble et al., 1990) 

 
In summary, it can be seen from the table that pyrite oxidation to form hematite is generated above 

480°C up to 800°C, according to four studies (Schorr and Everhart, 1969; Dunn et al., 1989ab; Groves et 
al., 1987). This oxidation occurred for an atmosphere of 21% oxygen. In another study (Hansen, 2003), 
when working within the above temperature range, lowering the oxygen concentration to 5% v/v, non-
stoichiometric pyrrhotite appeared as a result. In parallel, another author (Jorgensen and Moyle, 1982) 
indicated that non-stoichiometric pyrrhotite would be produced (experimentally evidenced) depending 
on the temperature for O2=21% concentration. On the other hand, author (Prasad et al., 1985) 
commented that pyrite would oxidize and thermally decompose depending on the experimental 
conditions for the same temperature (610°C), within the range used by (Schorr and Everhart, 1969), 
(Dunn et al., 1989ab; Groves et al., 1987; Jorgensen and Moyle, 1982), at O2=21% concentration. On the 
contrary, for very high temperatures (above 700°C), pyrite would oxidize to form various oxidized iron 
compounds within a range of oxygen concentrations (between 1-5% O2) (Huffmanet al., 1989; 
Srinivasachar et al., 1990; Nishihara and Kondo, 1959; McLennan et al., 2000). Unfortunately, hematite 
appears as trace amounts, but in another study, it is an important part resulting from oxidation. When 
working at very low temperatures (T<270 ° C), pyrrhotite appears, but then there is a generation of iron 
oxides at high temperatures (Mitovski et al., 2015). When a reducing atmosphere (carbon or CO2) is 
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used, different oxidized compounds are produced at temperatures above 1200°C. Non-stoichiometric 
pyrrhotite occurs at very low temperatures (392 to 538°C) (Hong, 1997), but in a parallel study 
(McLennan, 2000), pyrrhotite appeared at elevated temperatures (1200°C). However, in three studies 
where coal and carbon dioxide atmosphere were used to generate the reducing atmosphere (Komraus 
et al., 1990; Helble et al., 1990; Bhargava et al., 2009) there was no evidence of the pyrrhotite compound, 
only oxidized iron compounds,  

Based on the information gathered from the technical literature presented so far, the present 
investigation aims to obtain the reaction mechanisms as well as the pyrite oxidation kinetics at 
temperatures above 500°C for an oxygen-nitrogen mixture atmosphere. 

1.2. Physicochemical behaviour of pyrite 

Predominance diagrams summarizing the thermochemical reactions are used to understand the 
physicochemical behavior of pyrite oxidation. These diagrams predict the stability or instability of 
sulfide species in contact with vapor phases in roasting or smelting processes. Fig. 1 shows the diagram 
of the Fe-S-O system at a temperature of 650°C showing the condensed species Fe, FeS2, Fe7S8, FeSO4, 
and Fe2O3 which are in equilibrium with the vapor phase as a function of S2 and O2 partial pressure. 
The lines in the diagram separate the stability fields of the condensed phases. The thermochemical data 
used to generate the diagram were obtained from the HSC Chemistry program database (HSC 
Chemistry, 1999) 

 
Fig. 1. Stability diagram of the Fe-S-O system at 650ºC 

In the diagram it can be predicted that in the absence of oxygen (log PO2<-16) a first thermochemical 
reaction translated into a thermal decomposition of pyrite to produce pyrrhotite would be generated, 
being more likely that this decomposition occurs compared to the oxidation of pyrite to produce 
hematite, because the equilibrium line between these two condensed phases (FeS2/Fe7S8) is much 
widespread compared to the line between FeS2/Fe2O3. On the other hand, by increasing the oxygen 
concentration in the gas phase, the pyrrhotite would be oxidized to generate hematite. Therefore, pyrite 
would proceed from two possible transformation mechanisms which would be thermal decomposition 
with an intermediate compound (Fe7S8) and finally with the generation of the oxidized compound, 
Fe2O3. 

2. Experimental methods 

2.1. Pyrite samples 

All experiments were carried out with samples of pyrite concentrates from the flotation process, 
obtained from the Andina-Codelco Chile Division mine. These concentrates were dried and classified 
into four average particle size fractions: 12.3, 16.0, 22.7, and 33.8 microns. Most of the experiments were 
conducted with an average particle size of 16 microns. Based on chemical analysis, the iron content was 
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45.6%. An X-ray diffraction (XRD) analysis of the 16.0 microns sample showed major pyrite peaks (Fig. 
2), with no significant presence of any other compounds. With these two results, the calculated FeS2 
content was 97.85%. 

 
Fig. 2. Diffractogram of the initial pyrite concentrate sample 

2.2. Thermogravimetric system 

The experiments were carried out by the weight loss measurement method in a conventional 
thermogravimetric apparatus. This apparatus can be seen in Fig. 3. It basically consisted of a vertically  

 
Fig. 3. Configuration of the thermogravimetric equipment with the gas train 
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placed quartz tube mounted in a vertical oven with controllable temperature. The sample temperature 
was measured by a chromel/alumel thermocouple placed in the constant temperature region in the 
reaction tube, which was a space of about 90 mm in the center of the tube. A microbalance with a 
sensitivity of 0.00001 g was placed on the furnace tube, additionally, a data acquisition system, and a 
gas distribution system designed to provide nitrogen-oxygen atmospheres of various compositions. The 
thermogravimetric system was verified by testing coal of known chemical composition in a neutral 
atmosphere (101.3 kPa nitrogen) and different oxidizing atmospheres to validate the system. This 
carbon validation procedure has already been used in previous work (Aracena et al., 2016ab). 

2.3. Experimental procedure 

The samples used were placed in a 1.3 mL ceramic crucible (11 mm internal diameter (ID)×14 mm height 
(H)). In most experiments, approximately 50 mg of pyrite sample was placed in the crucible where it 
was introduced into the preheated reaction tube and suspended from the microbalance by a quartz 
chain in the constant temperature region of the tube. Every three seconds the weight loss of the sample 
was recorded. 

After the experimental time had elapsed, the solid samples were removed from the furnace. They 
were then rapidly cooled by injecting a high flow of nitrogen over the crucible, which lasted for a cooling 
time of about 20 seconds. The samples were moved to a desiccator and then sent to XRD to identify the 
crystalline compounds possibly generated. In some experiments, partially reacted samples were 
obtained in time ranges when changes were visualized in the slopes of the weight loss curves where 
possible intermediate compounds could exist during the oxidation process. 

3. Results and discussion 

3.1. Preliminary experiments 

Some preliminary experiments were carried out to evaluate the effect of the reaction gas flow rate 
(between 0.5 to 1.7 L/min) that could affect the mass transfer of pyrite roasting above 500°C. For this 
purpose, 50 mg of pyrite sample with a particle size of 16 microns was used. The oxidizing atmosphere 
was 10.90 kPa oxygen and had a temperature of 600°C. Fig. 4 shows a summary of the results. The data 
are plotted as the sample weight loss fraction given as ΔW/Wo, where ΔW is equal to (Wo-Wt) where 
Wo is the initial sample weight and Wt is the sample weight at time t.  

It can be seen in Fig. 4 that the reaction gas flow did not have a preponderant effect on the pyrite 
oxidation rate. Therefore, when having a thin layer of pyrite solid sample inside the crucible, the role of 
mass transfer resistance was not significant for these working conditions. Hence, for the following 
experiments, it was decided to work with 50 mg of sample and a reaction flow rate of 1.0 L/min. All 
experiments were conducted isothermally and at constant oxygen partial pressure. 

 
Fig. 4. Pyrite weight loss fraction as a function of time for different reaction gas flow rates for a temperature of 

600°C and atmosphere of 10.90 kPa oxygen 
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3.2. Pyrite reaction mechanisms for temperature above 500°C 

Some preliminary experiments were developed to evaluate the temperature ranges. According to 
Aracena (2016b) pyrite when oxidized from 400 to 500°C promotes the generation of the oxide, hematite. 
In our experiments, 50 mg of pyrite with a particle size of 16 microns was used, taking contact at oxygen 
partial pressure of 10.90 kPa and temperatures of 600 and 800°C. A 500°C curve was also added. Fig. 5 
shows the summary of the experimental results. 

 
Fig. 5. Effect of temperature on pyrite reaction mechanisms in oxidizing atmosphere (10.90 kPa oxygen) 

The curves obtained at 500, 600, and 800°C reach a maximum value of 0.33 weight loss fraction. This 
same value was recorded in previous work (Aracena, 2016b). The theoretical weight loss fraction 
represents the complete oxidation of pyrite to hematite, according to reaction (2). However, for the case 
of temperatures higher than 500°C, two different slopes can be observed before reaching complete 
oxidation, a case that was not observed in the curve at 500°C, nor in the previous study (Aracena, 2016b). 
These curves have slope changes close to a value of 0.23 in weight loss fraction and then reach a 
maximum value of 0.33. To elucidate the possible reaction mechanisms, partially and fully reacted 
samples were obtained from annex experiments using the same conditions of 600°C and O2 partial 
pressure of 10.90 kPa for times of 160, 600, and 1300 seconds, representing a weight loss fraction of 0.15, 
0.30, and 0.33, respectively. The three samples were sent for XRD analysis. The results are shown in Fig. 
6, where it can be observed that at 160 seconds (Fig. 6-A) pyrite diffraction lines could be identified as 
well as a new sulfide, a type of pyrrhotite (Fe7S8). No oxidized iron compounds were visible in this 
diffractogram. At 600 seconds (Fig. 6-B), lines of pyrrhotite and the oxidized compound, hematite, are 
observed, without the presence of pyrite. At the end of the roasting time, 1300 seconds (Fig. 6-C), only 
hematite diffraction lines were observed, with no sulfide identified. These results would demonstrate 
that the oxidation of pyrite at temperatures above 500°C proceeds by the formation of an intermediate 
compound, such as pyrrhotite (first stage of roasting), which in turn this second sulfide would oxidize 
to generate hematite (second stage of roasting). For the formation of Fe7S8, it would be produced by 
thermal decomposition of pyrite, due to the absence of oxides in the solids. Reaction (3) represents the 
generation of pyrrhotite where oxygen acts on gaseous sulfur to form SO2. Reaction (4) represents the 
oxidation of Fe7S8 to hematite. 

As observed in Fig. 5, the first curve goes up to an experimental weight loss fraction of 0.23. The 
theoretical weight loss fraction of Fe7S8 generation from FeS2 (reaction 3) is 0.23. This data agrees with 
that observed in Fig. 5 for a temperature of 600°C and 800°C where the slope change occurs. The same 
is presented with the theoretical fraction of oxidation of pyrite to hematite (reaction 2) which goes to a 
value of 0.33. This reaction would be the overall pyrite roasting process, also reported by Aracena 
(2016b), for temperatures below 500°C. 

The impact of demonstrating these new pyrite roasting mechanisms is focused on the amount of 
energy that each proposed reaction can deliver, which would generate a thermal balance inside a 
roasting reactor. Furthermore, in kinetic terms, each reaction (3 and 4) could have its own roasting 
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velocity being affected independently of the same study factors, generating a better use of the reaction 
time in the same reactor. The latter will be discussed later. 

 
Fig. 6. Diffractogram of partially and fully reacted samples 

FeS2 + 11/4O2(g) → 1/2Fe2O3 + 2SO2(g)                                                   (2) 
7FeS2 + 6O2(g) → Fe7S8 + 6SO2(g)                                                        (3) 

2Fe7S8 + 53/2O2(g) → 7Fe2O3 + 16SO2(g)                                                  (4) 

3.3. Effect of temperature on the oxidation of pyrite 

The effect of temperature on the overall oxidation of pyrite in an atmosphere of 5.07 kPa oxygen in the 
temperature range of 550°C to 800°C and 16.0 microns size was investigated. Fig. 7 shows the pyrite 
oxidation rate as the fraction of sample weight loss versus reaction time. It can be seen that temperature 
has a preponderant effect on the oxidation of pyrite as well as pyrrhotite (slope changes). When the 
temperature is increased, the rate of the first stage of roasting was influenced more significantly than 
the second stage. Thus, a weight-loss fraction of 0.20 is achieved in 520 seconds at 550°C, whereas, at a 
temperature of 800°C, the same weight fraction is reached in 38 seconds, 13.7 times faster. However, 
regarding the second stage, for a fraction of 0.31 it is achieved in 1420 seconds (550°C) while increasing 
the temperature (800°C), the same fraction is obtained in 530 seconds, only 2.7 times faster. 

 
Fig. 7. Pyrite weight loss curves for temperature ranges from 550 to 800°C for an oxygen concentration of 5.07 kPa 

(A) 

(B) 

(C) 
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The strong temperature dependence of the first stage of pyrite oxidation would be an indication that 
the thermal decomposition of pyrite would be controlled by the chemical reaction on the surface of the 
particle. On the other hand, the second stage (oxidation of pyrrhotite to hematite) would be controlled 
by the molecular diffusion of oxygen gas through the porous layer formed. 

3.4. Oxygen concentration effect 

The effect of oxygen concentration on the pyrite roasting rate was analyzed for a temperature of 600°C 
in the range of 5.07 to 28.60 kPa oxygen (Fig. 8). It can be observed that, by increasing the oxygen 
concentration, the pyrite roasting rate to pyrrhotite increases as well as towards hematite generation. 
The opposite is the case concerning the phenomenon given for the temperature analysis. The effect of 
oxygen is pronounced with the second stage (Fe7S8 → Fe2O3) compared to the first stage (FeS2 → Fe7S8). 
In this first stage, as it would be controlled by the chemical reaction, the influence of the oxygen 
concentration does not promote a greater effect, contrary to what was observed for the second stage. 

 
Fig. 8. Effect of oxygen concentration on pyrite roasting rate for a temperature of 600°C. 

Related work on the FeS2 roasting process (under 500°C) at 28.60 kPa indicated that the amount of 
oxidized pyrite decreased to a fraction of 0.18 (Aracena, 2016) as the temperature decreased. This 
occurred because hematite formation generated an outer layer preventing pyrite oxidation. In this 
investigation (above 500°C), XRD samples were obtained at an oxygen concentration of 28.60 kPa and 
a time of 900 seconds (not shown in this research). The results showed only hematite peaks, with no 
sulfide found (neither pyrite nor pyrrhotite). This showed that the pyrite roasting was complete and 
only hematite was generated, contrary to what happened when roasting is obtained below 500°C. 

3.5. Particle size effect 

Fig. 9 shows the results obtained for different pyrite particle sizes (12.3, 16.0, 22.7, and 33.8 microns) 
for a concentration of 5.07 kPa of oxygen and temperatures of 800 and 600°C. It can be observed that 
particle size has a preponderant effect on the first stage of pyrite roasting compared to the second stage. 
For temperatures of 600°C, as the particle size decreases, the pyrite decomposition rate increases. On 
the contrary, this decrease in size did not influence the oxidation of pyrrhotite to hematite, obtaining 
similar roasting rates. These two phenomena can be validated by the limiting stages that would govern 
both stages, the first would be by chemical reaction and the second by diffusion. When a temperature 
of 800°C was used, the first stage is very fast as the particle size increased, however, for the second stage, 
pyrrhotite oxidation rates are maintained. 

The reaction mechanisms established in this research, as well as the factors that influence the speed 
of transformation and generation of sulfurized/oxidized iron species, have added the technical 
literature presented here (Table 1). However, the depth of this updated study given by 
thermogravimetry techniques and subsequent validation have shown that there are two half-reactions 
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over 550°C and at different oxygen concentrations, completely different cases from those shown in Table 
1. 

 
Fig. 9. Evaluation of particle size on pyrite roasting rate for the two stages of formation: pyrrhotite and hematite 

in an atmosphere of 5.07 kPa O2 

3.6. Oxidation kinetics of pyrite to pyrrhotite 

As discussed, the first stage of the reaction (equation 3) would be relevant because it is the first 
transformation that pyrite undergoes to consolidate its oxidation completely. According to Fig. 7, no 
change in the thermal decomposition reaction mechanism of pyrite to pyrrhotite is shown. Therefore, it 
is reasonable to promote that the sample underwent a uniform internal reaction, and the reaction 
products diffuse easily. Under these conditions, the first stage of pyrite thermal decomposition reaction 
can be represented by a simple model assuming control by chemical reaction. The following first-order 
kinetic equation regarding the fraction converted would fit the experimental data very well: 

ln51 − X789 = k;<<t                                                                       (5) 
where XPy is the fraction converted from FeS2 to Fe7S8, kapp is the apparent reaction rate constant, and t 
is the time. The apparent rate constant will depend on temperature, gas phase concentration, and 
average particle size. The dependence of these factors can be determined from the following equation: 

k;<< = k
>57?@9

A

BC
ℯE

FG
HI                                                                     (6) 

Here, k is the intrinsic kinetic constant, b is the stoichiometric coefficient given by equation (3), where 
is the molar ratio between oxygen molecules and pyrite particles, PO2 and n is the partial pressure and 
reaction order concerning oxygen, ro is the average particle radius, Ea is the activation energy, R is the 
gas constant and T is the temperature. 
Using the experimental data in Fig. 7, a plot was constructed that will represent the chemical reaction 
model as a function of time for the temperature range 550 to 800°C. Fig. 10 shows the results of a good 
linear fit of the experimental data with regression coefficients (R2) above 0.99 for the entire temperature 
range. These high R2 values validate the kinetic equation (5). The apparent reaction rate constants (the 
slopes of each straight line) are presented in Table 2. 

Like what was developed previously, the reaction order "n" was obtained using the experimental 
data given in Fig. 8 where the kapp values (the slopes of each straight line) as a function of time for the 
different oxygen partial pressures could be extracted using equation (5). The results are summarized in 
Fig. 11. The linear fit of the experimental data and the chosen model can be observed. The kapp values 
were used to construct the graph ln kapp as a function of ln PO2 which is presented in Fig. 12. In this 
figure, the linear fit of the apparent kinetic constant values with R2 over 0.98 can be observed. The 
reaction order n was calculated using the slope value which resulted in a value of 0.5 with respect to the 
oxygen partial pressure. 
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Fig. 10. First order kinetics of pyrite oxidation to produce pyrrhotite at PO2=5.07 kPa 

Table 2. For each temperature studied, the values obtained for the apparent rate constants are shown 

T,°C (K) 1000/T, 1/K kapp×104, 1/s 
550 (823) 1.2151 4.28 
575 (848) 1.1792 5.86 
600 (873) 1.1455 7.55 
700 (973) 1.0277 13.74 
800 (1073) 0.9320 55.70 

 
Fig. 11. ln (1-XPy) as a function of time and oxygen partial pressure in the oxidation of pyrite to pyrrhotite at 600°C 

Observing equation (6), the particle radius varies inversely with the apparent kinetic constant. To 
corroborate this relationship, the experimental data in Fig. 9 were used, fitted to equation (5), and Fig. 
13 was constructed. It can be seen that relationship ln (1-XPy) complies very well with the experimental 
data generating a good fit for all four particle sizes. The kapp values obtained from this figure were 
plotted in Fig. 14 as a function of the inverse of the initial particle radius for a temperature of 600°C. The 
linear dependence of these values shown in the figure (R2>0.99) supports the kinetic model used for this 
case. 

Next, to obtain the activation energy (Ea), one must first calculate the intrinsic kinetic oxidation 
constant, k, for the different temperatures using the apparent kinetic constants obtained from Fig. 10. 
The value of n will be 0.5 and the stoichiometric constant of b will be 6/7 according to reaction (3). The 
particle size used was 16.0 microns and oxygen concentration of 5.07 kPa. The calculated values of the 
intrinsic constants were used to draw the Arrhenius diagram shown in Fig. 15. This figure shows a good 
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linear fit (R2>0.95) for the apparent kinetic constants for each temperature. The calculated activation 
energy was 70.1 kJ/mol for the temperature range 550-800°C, which is the typical value for a chemical 
reaction-controlled reaction. 

 
Fig. 12. Dependence of the apparent reaction rate constant on oxygen partial pressure 

 
Fig. 13. Kinetics of pyrite to pyrrhotite roasting for different particle sizes 

 
Fig. 14. Dependence of the apparent kinetic rate constant of the oxidation of pyrite to pyrrhotite on the inverse of 

the initial particle size 
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Fig. 15. Arrhenius plot for the temperature range from 550 to 800°C 

Therefore, the oxidation kinetics of pyrrhotite in an oxygen-containing atmosphere can be 
represented by the following expression: 

ln51 − X789 = 4.77 × 102
M
2N 	57?@9

P.Q

BC
ℯE

RPSPP
HI t                                                  (7) 

where R equals 8.314 J mol-1 K-1, ro is in microns, (PO2) is in kPa, t is in seconds and k=4.77×107 µm  
kPa-0.5 s-1. 

4.  Conclusions 

Pyrite was sequentially oxidized over 500°C, generated pyrrhotite (first stage), pyrrhotite was oxidized 
to finally form hematite (second stage). These oxidation mechanisms were thermodynamically 
evaluated and experimentally validated by sample weight loss and XRD analysis. 
In kinetic terms, the increase in temperature favored the first stage over the second stage, otherwise 
with the effect of oxygen concentration, which produced a decrease in oxidation time in the second 
stage. By decreasing the particle size, it generated a positive increase in the roasting speed of the first 
stage. 
The model that best represented the roasting of the first stage (FeS2 → Fe7S8) was ln (1-XPy), with a 
calculated activation energy of 70.1 kJ/mol. The order of reaction was 0.5 concerning the partial 
pressure of oxygen and inversely proportional to the initial particle radius. 
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