
DOI: 10.37190/ppmp/127920 

Physicochem. Probl. Miner. Process., 57(1), 20201, 1-17 Physicochemical Problems of Mineral Processing  

http://www.journalssystem.com/ppmp 
ISSN 1643-1049 

© Wroclaw University of Science and Technology 

Received May 08, 2020; reviewed; accepted September 28, 2020 

Preparation of amphoteric modified bentonite from calcium-based 
bentonite for adsorption of anionic dye: The importance of sodium-

modification pretreatment 

Hang Yin 1, Zijie Ren 1, 2, Huimin Gao 1, 2, Weiyi Han 1, Junfang Guan 1  
1 School of Resources and Environmental Engineering, Wuhan University of Technology 
2 Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology 

Corresponding author:  renzijie@whut.edu.cn (Z. Ren) 

Abstract: To understand the influence of sodium-modification pretreatment on the adsorption of 
anionic dye by amphoteric modified bentonite, three kinds of adsorbent materials, including sodium-
modified bentonite, amphoteric modified calcium-based bentonite and amphoteric modified bentonite 
pretreated by sodium modification, were firstly synthesized and characterized, and afterwards their 
adsorption performance and mechanism for a form of anionic dye, Acid Yellow 11, were investigated 
comparatively. The crystalline phases, hydration property, surface charge characteristic and functional 
groups of prepared modified bentonite were characterized and evaluated by X-ray diffraction swelling 
volume, Zeta potential and Fourier transform infrared spectroscopy, respectively. The sodium 
modification expanded the interlayer space of montmorillonite, released the internal surface area and 
improved the hydration performance of bentonite. Due to the replacement of Na+ for Ca2+, the 
probability of interlayer cations overflowing from the interlayer space and exchanging with the 
amphoteric modifier increases. Therefore, the content of interlaminar organic material in amphoteric 
modified bentonite pretreated with sodium-modification pretreatment was higher than that in 
unpretreated amphoteric modified bentonite. The hydration and dispersibility were significantly 
stronger, and the adsorption capacity of acid dye was also better. The findings of this investigation 
suggest that sodium modification pretreatment is very positive and necessary in the process from 
sodium–amphoteric modification. 

Keywords: calcium-based bentonite, sodium modification pretreatment, amphoteric modification, 
anionic dye 

1. Introduction 

The textile dyeing and finishing industry is a pillar industry in many countries and regions worldwide. 
China has been ranked as the world's largest textile and dyed fabric producer for several consecutive 
years. In 2019, the production of yarn in mainland China was 28.921 million tons, and that of cloth was 
57.56 billion meters, which were 6.1% and 17.6% less than in 2018, respectively (National Bureau of 
Statistics of the PRC, 2020). Among them, from January to October 2019, the output of dyed cloth 
produced by enterprises above a designated size reached 44.169 billion meters, an increase of 4.51% 
over the same period in 2018 (Liang, 2020). The huge industrial scale also brought huge environmental 
pressures. Even if the latest national emission standards are strictly implemented (Ministry of Ecology 
and Environment of the PRC, 2012), the annual generation of dyeing wastewater exceeds 700 million 
tons (40% reuse). With the continuous strengthening of environmental protection awareness, the 
government has issued a series of guiding policies for the dyeing industry, with a view to achieving 
healthy industrial development while reducing pollutant emissions and environmental hazards 
(Ministry of Ecology and Environment of the PRC, 2017; Ministry of Ecology and Environment of PRC, 
2018). However, as of September 2019, according to the list of enterprises conforming to the standards 
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and conditions of the printing and dyeing industry (2017 edition) published by the ministry of industry 
and information technology in two batches, there were only 22 enterprises conforming to the standards 
(Ministry of Industry and Information Technology of the PRC, 2019). Compliance emissions have 
become a bottleneck, restricting the development and even survival of the dyeing industry. Dyeing 
wastewater has deep chroma, poor biochemical properties and is difficult to treat. The currently studied 
methods for treating dyeing wastewater include biochemical oxidation, biodegradation and 
photocatalytic degradation (Hameed and Ismail, 2020; Lum et al., 2020; Oliveira et al., 2020), functional 
microbial flocculant flocculation (Wang et al., 2020), ozone and fungal combined treatment methods 
(Vanhulle et al., 2008). Among them, the physical and biochemical oxidation methods represented by 
sewage treatment plants are still the mainstream of industrial applications (Wang et al., 2011; Yuan et 
al., 2020), and there are also studies that try to improve the treatment efficiency and the stability of the 
treatment (Vives et al., 2003). Compared with other treatment methods, the decolorization effect of the 
adsorption is stable, and the resistance to wastewater quality changes is better (Zhuang et al., 2009). The 
adsorbent is cheap and has a wide range of sources (Malik, 2004; Ebrahimi et al., 2013; Georgin et al., 
2016), so the adsorption method has a stronger competitiveness in industrial production applications. 

Due to the existence of exchangeable hydrated cations (Na+, Ca2+, etc.) in the interlayer domain of 
montmorillonite particles, the bentonite naturally has a good adsorption performance for cationic dyes 
(basic dyes) (Leodopoulos et al., 2015) and, furthermore, it also endows bentonite with good modifiable 
ability (Rawajfih and Nsour, 2006; Haghseresht et al., 2009; Hou et al., 2011; Arellano-Cardenas et al., 
2013). Bentonite can be divided into many types according to the type of interlayer hydrated cations, 
including calcium-based bentonite and sodium-based bentonite, as well as hydrogen-based, aluminum-
based, sodium- based, calcium-based and other types of bentonite. Bentonite is widely distributed in 
many countries worldwide(Aronson and Lee, 1986; Benito et al., 1998; Mitchell et al., 2004; Kirali and 
Lacin, 2006; Afolabi et al., 2017; Belousov and Krupskaya, 2019). Among them, China's bentonite 
resources are very rich. As of 2017, the identified reserves of bentonite ore resources in mainland China 
have been 3.06 billion tons (National Bureau of Statistics of PRC, 2019), of which 70% is calcium-based 
bentonite (Wu et al., 2016). Compared with natural sodium-based bentonite, calcium-based bentonite 
has poor adsorption properties and modifiable properties, but calcium-based bentonite has large 
reserves and cheap prices. It is more cost-effective as an adsorbent and has more potential for use in 
industrial applications. 

Amphoteric surfactants contain both anionic and cationic hydrophilic groups in the same molecule, 
so they can both donate protons and accept protons (Yan et al., 2004). Amphoteric modified bentonite 
is obtained by amphoteric surfactants intercalated into the montmorillonite layer through ion exchange 
or adsorbed on the outer surface of montmorillonite particles due to hydrophobic bonding (LI, 2012). 
The amphoteric surfactant has a hydrophobic long carbon chain at one end and anionic and cationic 
hydrophilic groups at the other end, so that the amphoteric modified bentonite has better adsorption 
performance for nonionic organic pollutants and cationic pollutants (Meng et al., 2007; Pang et al., 2008; 
Sun and Zhu, 2010). However, there are some limitations in the study of amphoteric modified bentonite: 
First, most studies on amphoteric modified bentonite have selected high-quality sodium-based 
bentonite as the object of modification in order to obtain better adsorption performance. However, few 
studies on amphoteric modified bentonite choose calcium-based bentonite as the object of modification, 
and the effects of sodium modification pretreatment on the adsorption performance of amphoteric 
modified bentonite have been neglected. Second, the adsorption studies of amphoteric modified 
bentonite are mainly focused on nonionic organic pollutants and cationic pollutants, but few anion 
organic pollutants. 

Therefore, in this study, high-grade natural calcium-based bentonite was used as the modification 
object, and medium–long chain amphoteric surface-active BS-12 was used as the modifier to prepare an 
amphoteric modified bentonite. The acid dye AY11 was used as the adsorption object to evaluate the 
adsorption performance of modified bentonite on anionic organic matter, with a view to achieving the 
following research objectives: (1) preparation and characterization of amphoteric modified bentonite 
based on calcium-based bentonite; (2) explore the adsorption mechanism of amphoteric modified 
bentonite on anionic organic matter; (3) investigate the mechanism of the influence of sodium 



3 Physicochem. Probl. Miner. Process., 57(1), 2021, 1-17 

modification pretreatment on the modifiable properties of bentonite and the adsorption properties of 
amphoteric modified bentonite. 

2. Experimental 

2.1. Materials and Reagents 

Bentonite minerals were supplied from a bentonite mine in Huludao, Liaoning, China. Raw bentonite 
(RB) was purified by free settling with a classification size of 10 µm and dried. After drying, the sample 
was crushed in an agate mortar to produce bentonite concentrate (BC).  

Dodecyl dimethyl betaine (BS-12, CAS: 683-10-3), an amphoteric surfactant produced by the 
Qingdao Usolf Chemical Technology Co., Ltd., was used as the amphoteric modifier. Fig. 1a shows the 
chemical structure of BS-12. The C.I. Acid Yellow 11(AY11, CAS:6359-82-6), a form of acid azo dye, was 
purchased from Hubei Baidu chemical Co., Ltd., China. Fig. 1b shows the chemical structure of AY11.  

 
Fig. 1. Chemical structure of AY11 and BS-12 

2.2. Adsorbent preparation 

To prepare the Na-modified bentonite (NB), 100 g of BC powder was transferred to a quartz conical 
flask blended with a 500 ml solution of Na2CO3 with 1 wt%, and stirred for 30 min at 60℃. The conical 
flask was sealed with a polyethylene film and aged at 50℃ for 72 h, dried at 95℃ and then ground into 
powder form and screened by a sieve size of 45 µm. Then, 10 g of the NB and BC were transferred to 
two quartz conical flasks blended with 200 ml distilled water and stirred at 60℃.Then, 2 ml dodecyl 
dimethyl betaine (BS-12) solution (35wt%) was dropped into the slurry at a rate of 1 ml/min, stirring 
for 4 h at a constant temperature of 60 ℃. The conical flask was sealed and aged at 50℃ for 72 h. Finally, 
the bentonite slurry was washed 10 times with distilled water and then dried at 80 ℃ and ground into 
powder form and screened by a sieve size of 45 µm. The two prepared adsorbents were Amphoteric 
Modified Na-Bentonites (AMNB) and Amphoteric Modified Ca-Bentonites (AMCB). The preparation 
flow is shown in Fig. 2. 

 
Fig. 2. Adsorbent preparation flow chart 

2.3. Adsorption experiments 

For adsorption experiments, the desired concentration and dosage of AY11 and adsorbent were 
transferred into a 100 ml quartz conical flask and shaken for a certain time in temperature controlled by 
a water bath shaker (SHA-BA, XINBAO, Jintan, China). The solid phase was separated from the solution 
using a high-speed centrifuge (H2050R-1, CENCE Instruments Co., Ltd., Hunan, China). Then, the 
absorbance of the residual AY11 in the supernatant was measured at 398 nm, using a UV–Vis 
spectrophotometer (A-360, AOE Instruments Co., Ltd., Shanghai, China). The concentration of the 
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residual AY11 was determined using the linear regression equation (y = 0.0158 x +0.008, R2 = 0.9999), 
obtained by plotting a calibration curve for AY11 over a concentrations range. The percentage removal 
of pigment was calculated using the following equation:   

Removal	efficiency(%) = (34536)
34

× 100                                                     (1) 

where C0 and Ct are the initial and at time t concentrations (mg/L) of AY11, respectively. The amount 
of adsorbed AY11 at equilibrium qe (mg/g) was calculated using the formula: 

𝑞; =
(3453<)=

>
                                                                              (2) 

where Ce is the equilibrium concentration of AY11 solutions (mg/L), V is the volume of pigment 
solution (L) and m is the mass of adsorbent (g). 

2.4. Testing methods 

2.4.1. Zeta potential measurement 

For zeta potential measurement, the samples were ground in an agate mortar. The particle size of the 
ground powder was below 2 µm, as measured by the Leica DMLP Microscope. In total, 30 mg of ground 
minerals was mixed with 50 mL DI water in a beaker. After stirring for 2 min, HCl or NaOH was added 
to adjust the slurry pH and stirred for another 6 min. The slurry was then injected into a Tiselius cell in 
a Zeta Plus Zeta Potential measurement unit. Each sample was measured three times and the average 
zeta potential was reported. 

2.4.2. Infrared spectroscopic analysis 

Fourier transform infrared spectroscopy (FTIR) analysis was conducted by a Nicolet iS10 FTIR 
Spectrometer. A small amount of mineral sample was mixed with KBr and ground in an agate mortar. 
The ground powder was pressed into a pellet and then transferred into the spectrometer for 
measurement.  

2.4.3. XRD 

X-ray diffraction patterns were obtained with X-ray diffractometer D/Max-IIIA (RIGAKU, Japan) with 
monochromatic Cu Kα radiation, at an angle range of 3°–70° and a rate of 0.02 °/s.  

2.4.4. Cation exchange capacity (CEC) 

The method of CEC measurement was based on GB/T 20973-2007 (General administration of quality 
supervision, inspection and quarantine of the PRC and Standardization administration of the PRC, 
2007). The method is as follows:  

A total of 1.00 g of the dried bentonite sample was weighed, put it into a 50 mL centrifuge tube and 
then covered and weighed (m1). Then, 30 mL barium chloride solution (0.1mol/L) was added, shook 
mechanically for 1 h, centrifuged at 3000 g relative centrifugal force for 10 min, poured out in suspension 
in a 100 mL volumetric flask. The above process was repeated more than twice and add 100 mL volume 
of suspension. The bottle was adjusted to 100 mL with barium chloride solution. This was named filtrate 
A. The bentonite was dispersed and precipitated with 30 mL barium chloride solution (0.0025 mol/L), 
shook mechanically for 1 h and left to stand for more than 5 h. Then, the bentonite was centrifuged at 
3000 g relative centrifugal force for 10 min, and the supernatant was poured out. The centrifugal test 
tube of precipitated bentonite was weighed and covered (m2), then 30 mL of magnesium sulfate solution 
(0.0200 mol/L) was added to disperse the precipitated bentonite, shook mechanically for 1 h and left to 
stand for more than 5 h. Then, it was centrifuged for 10 min under the condition of a relative centrifugal 
force of 3000 g and poured onto the upper layer. The clear liquid was filtered through a 7 cm diameter 
filter paper into an Erlenmeyer flask. This was named filtrate B. The above steps were followed without 
adding bentonite to test as a blank control sample. Then 0.200 mL of filtrate B and control blank test 
solution were transferred from the Erlenmeyer flask to a 100 mL volumetric flask, 10 mL lanthanum 
nitrate solution (10mg/L) was added and diluted to the mark with water. At the wavelength of 285.2 
nm, the absorbance was measured on an atomic absorption spectrophotometer with an air acetylene 
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flame, and the magnesium concentration of filtrate B (C1) and the magnesium concentration of the blank 
test solution (Cb1) were calculated from the standard curve. The cation exchange capacity (CEC) was 
calculated according to the formula: 

𝐶𝐸𝐶 = (3AB53C)DEEE
>

                                                                       (3) 

												𝐶F = 𝐶G(30+ 𝑚F −𝑚G)/30                                                               (4) 
where CEC is he cation exchange capacity of the sample (mmol/100g), Cb1 is magnesium 
concentration of blank test solution (mmol/L), C2 is magnesium concentration in filtrate B after 
correction (mmol/L), m is the mass of the sample (g), C1 is magnesium concentration in filtrate B 
(mmol/L), m1 is mass of centrifugal tube and dry sample (g), m2 is mass of centrifugal tube and wet 
sample (g). 

2.4.5. Swell volume (SV) 

The method of SV measurement is based on SNT 0990-2001(General administration of quality 
supervision, inspection and quarantine of the PRC, 2001). The method is as follows:  

First 2.0 g of the sample was weighed and added to a measuring cylinder with a stopper of about 60 
ml of water added in several times. The sample was shook during adding to avoid the agglomeration 
of the sample. After all the samples were added, 25 mL of hydrochloric acid (1mol/L) was added, shook 
for about 1 min and diluted to 100 mL with water. This was left to stand for 24 h and the scale value at 
the interface of the precipitate was read. The swell volume was expressed as the expansion 
volume/sample weight (mL/g) and was calculated according to the formula: 

𝐴 = N
>

                                                                                   (5) 
where A is the SV of the sample (mL/g), B is expanded volume of bentonite (mL), m is the mass of 
the sample (g). 

2.4.6. Methylene Blue Index (MBI) 

The method of MBI measurement is based on GB/T 20973-2007. The method is as follows: 
First 0.2 g ± 0.001 g of bentonite sample that had been dried at 105℃ ± 3℃ for 2 h was weighed and 

placed in a 250 ml conical flask pre-filled with 50 ml water. This was made wet, and dispersed on a 
magnetic stirrer for 5 minutes. Then, 20ml of 1% sodium pyrophosphate solution was added and stirred 
for 2 to 3 minutes. Then, the sample was heated on an electric furnace to slight boiling for 2 min, before 
removal and cooling to 25 ± 5°C. 

Methylene blue standard solution was added dropwise with a burette while stirring. For the first 
time, about two thirds of the total amount of methylene blue solution was added, stirring for 2 minutes 
to fully react, and then 1 to 2 ml was added each time. After stirring for 30 seconds, a drop of test solution 
was taken with a glass rod and quantified at a medium speed. On the filter paper, we observed whether 
or not there was a light blue halo around the blue spots. We continued to drip the methylene blue 
solution. When the blue halo started to appear, we continued stirring for 2 minutes, and then dipped a 
drop of test solution on the medium-speed quantitative filter paper with a glass rod and observed 
whether the light blue halo remained. In the event that the light blue halo did not appear, we continued. 
Methylene blue solution was carefully added dropwise. When a light blue halo appeared after stirring 
for 2 minutes, this indicated that the end point had been reached, and the titration volume was recorded. 
The methylene blue index is calculated according to the formula: 

𝑀𝐵𝐼 = DRS.UG=3
GEEE>

× 100                                                                      (6) 

where MBI is methylene blue index (g/100g), C is concentration of methylene blue solution (mol/L), V 
is the titer of methylene blue solution (mL) and m is the mass of the sample (g). 

3. Results and discussion 

3.1. Characterization of modified bentonite 

Fig. 3 shows the main phase compositions of the PB and BC analyzed by X-ray diffraction patterns 
analysis (XRD). Raw bentonite (RB) is made up of montmorillonite, feldspar and calcite. The d spacing, 
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a typical characteristic peak of the 001 plane (d001) of montmorillonite, was 15.43Å, indicating that this 
bentonite sample belongs to calcium bentonite. After purification, the calcite in the sample is almost 
completely removed, but a small amount of feldspar remains.   

 
Fig. 3. XRD diffraction patterns of the Raw bentonite and BC 

Table 1 lists the chemical composition of the RB and BC. The content of Al2O3 and MgO in BC 
increased, and the other components decreased. The decrease in CaO could be related to the removal of 
calcite, while SiO2, K2O and Na2O were related to feldspar.  

Table 1. Chemical composition of RB and BC 

Component SiO2 Al2O3 MgO CaO Fe2O3 
RB (wt. %) 61.887  17.616  4.970  2.365  1.580  
BC (wt. %) 61.542  18.971  5.352  2.183  1.215  
Component K2O Na2O TiO2 P2O5 L.O.I.* 
RB (wt. %) 0.599  0.254  0.137  0.135  10.458  
BC (wt. %) 0.553  0.205  0.113  0.034  9.832  

 
The MBI showed that the montmorillonite content in the purified sample BC increased from 82% to 

90%. 
Fig. 4 shows the XRD patterns of the four samples. As seen in Fig. 3, the Na-modified treatment of 

BC leads a decrease in d00l values and changes in basal reflections from d001 = 15.43 Å to d001 = 12.44 
Å, resulting from the replacement of interlayer Ca2+ by Na+, which indicates that the calcium bentonite 
modified to be sodium bentonite. The CEC of BC was 92.05 mmol/100g, and that of NB was 97.87 
mmol/100g. The increase in CEC indicated that the total amount of cation exchange increased due to 
the replacement of calcium ions by sodium ions, which could also prove the success of sodium 
modification. The influence of amphoteric organic modifier BS-12 on bentonite was also reflected by the 
change in d001 value. The d001 values increased from d001 = 15.43 Å of BC to d001 = 16.41 Å of AMCB, 
and from d001 = 12.44 Å of NB to d001 = 14.74 Å of AMNB, caused by the intercalation of amphoteric 
surfactant. By comparing the change in the d001 value before and after the amphoteric modification, it 
can be found that the d001 value of both calcium bentonite and Na-modified bentonite increases after 
the amphoteric modification of BS-12. This indicates that both calcium bentonite and Na-modified 
bentonite can be modified by the intercalation of an amphoteric organic modifier, such as BS-12. In 
addition, the d001 value of NB that had been Na-modified as a pretreatment increased more after 
amphoteric modification than that of BC. The difference in d001 values between AMCB and AMNB is 
caused for two reasons. On the one hand, after BS-12 enters the BC and NB layers, it cannot completely 
replace the original interlayer hydrated cations, and the remaining hydrated cations continue to affect 
the interlayer spacing. On the other hand, due to the large difference in hydration properties between 
NB and BC, the amount of BS-12 entering the layers is different. Generally speaking, the greater the 
amount of modifier entering the interlayer, the greater the increase in d001 value (Xiao et al., 2020a). 
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The hydration performance of NB is better than that of BC, so more BS-12 enters the interlayer of NB, 
making the value of NB d001 increase larger than that of BC. 

 
Fig. 4. XRD patterns of the four samples 

3.2. Batch adsorption tests 

AY11 is a widely used acidic anionic dye with moderate molecular weight, easily soluble in water, stable 
in acid and alkali resistance, strong color rendering, and stable coloration. It is representative of an azo 
dye. The adsorption test with AY11 can reasonably and accurately evaluate the adsorption capacity of 
modified bentonite for acidic anionic dyes. 

In order to estimate the equilibrium contact time for adsorption of AY11 onto BC, NB, AMCB and 
AMNB, the adsorption study was carried out at different time interval ranges from 0 to 120 min under 
certain conditions and the results are shown in Fig. 5a. It can be seen from Fig. 5a that BC can hardly 
adsorb AY11. The adsorption performance of modified bentonite on AY11 is AMNB > NB > AMCB. 
AY11 was rapidly adsorbed by AMCB and AMNB with an increasing contact time of up to 15 min, 
which then became constant as the contact time went by. The adsorption rate was faster at the beginning 
because the AY11 molecules were adsorbed by the exterior surface at an early stage, and then after their 
saturation, were adsorbed by the interior surface of the adsorbent (Amin, 2009).  However, the 
adsorption of AY11 on NB quickly reached saturation (≤15min), and then the adsorption curve is nearly 
flat and unchanged without an obvious phase change, indicating that the adsorption of NB on AY11 is 
different from the adsorption mechanism of AMCB/AMNB on AY11. For further study, 60 min was 
selected as the equilibrium time. 

The effects of initial concentration of AY11 on the amount of adsorbed pigment (Fig. 5b) were 
discussed in detail. Within the range of the initial concentration of AY11, the adsorption capacity of 
AMNB is always significantly better than that of AMCB and NB, which once again confirms the 
superiority of the adsorption performance of composite modified bentonite. When the initial 
concentration of AY11 was low (10–50 mg/L), there was no significant difference between the 
adsorption capacity of AMCB and NB for AY11. When the initial concentration was higher (60–80 
mg/L), NB shows better adsorption performance. During the initial concentration increase in AY11, it 
was not adsorbed by unmodified bentonite. However, the adsorption capacity of the other three 
modified bentonites increased with the increase in the initial concentration in the range 10–80 mg/L at 
the same temperature. These amounts can be higher with higher concentration of AY11 for the same 
amount of adsorbent. This results from an increase in mass transfer driving force due to the 
concentration gradient developed between the bulk solution and surface of the adsorbent (Purkait et 
al., 2006). 

3.3. Adsorption kinetics, isotherms and thermodynamics 

In order to investigate the adsorption process of AY11 onto NB, AMCB and AMNB kinetics data were 
checked  through the  pseudo-first-order  and  pseudo-second-order  model  (Ho and Mckay, 1999).  The 
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Fig. 5. Effect of contact time on AY11 adsorption capacity (a) (dose of adsorbent = 1 g/L, AY11 = 50 mg/L, 
temperature = 298 K, pH = 6.5) and effect of initial concentration on AY11 adsorption capacity (b) (dose of 

adsorbent = 1 g/L, contact time = 60 min, temperature = 298 K, pH = 6.5) 

comparison of pseudo-first-order and pseudo-second-order is shown in Table 2. Among them, the 
relative error was calculated by dividing the absolute value of the difference between the two sets of 
values by the set of values with a high correlation coefficient. It can be seen from Table 2 that, for the 
quasi-first-order kinetics model, the correlation coefficients of the three samples' nonlinear fittings are 
significantly higher than those of the linear fitting, indicating that the nonlinear fitting results of the 
quasi-first-order kinetics of the samples are better than the linear fitting results. The linear fitting 
correlation coefficient of quasi-second-order kinetics is slightly better than that of nonlinear fitting, but 
the difference is small. The regression coefficient value (R2) of linear fitting is all higher than 0.999, and 
the relative error of Qe and K is smaller than that of quasi-first-order kinetics fitting, indicating that the 
three samples followed the pseudo-second-order kinetics model better. 

Table 2. Kinetic parameters for the adsorption of AY11 (308 K) 

308 K Parameter Nonlinear fitting Linear fitting Relative error 
pseudo-first-order 

NB 

Equation 𝑞V = 𝑞;(1− 𝑒5XBV) ln(𝑞; − 𝑞V) = 𝑙𝑛𝑞; − 𝑘G𝑡  
qe (mg/g) 7.92 14.34 81.06% 
k1 (min-2) 0.5247 0.6152 17.25% 

R2 0.9978 0.8786  

AMCB 
qe (mg/g) 6.21 2.93 52.82% 
k1 (min-2) 0.2084 0.0530 74.57% 

R2 0.9882 0.8699  

AMNB 
qe (mg/g) 10.24 3.89 62.11% 
k1 (min-2) 0.2566 0.0916 64.30% 

R2 0.9957 0.8282  
pseudo-second-order 

NB 

Equation 𝑞V =
𝑘F𝑞;F𝑡
1 + 𝑘F𝑞;𝑡

 
𝑡
𝑞V
=

1
𝑘F𝑞;F

+
𝑡
𝑞  

qe (mg/g) 8.06 6.29 28.14% 
k2 (g/mg min) 0.0271 0.0255 6.27% 

R2 0.9989 0.9999  

AMCB 
qe (mg/g) 6.72 5.15 30.49% 

k2 (g/mg min) 0.0527 0.0377 39.79%  
R2 0.9977 0.9998  

AMNB 
qe (mg/g) 10.84 9.33 16.18% 

k2 (g/mg min) 0.0177 0.0115 53.91% 
R2 0.9896 0.9998  
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The experimental results of isothermal adsorption, shown in Fig. 6a–c, are adsorption isotherms of 
NB, AMCB and AMNB at 298, 308 and 318 K, respectively, and the initial concentration range is 10–
80mg/L. 

Adsorption isotherms are characterized by certain constant parameters associated with surface 
characteristics, the affinity of the adsorbent and the adsorption capacity of the adsorbent, which can be 
used to evaluate the feasibility of this process for a given application and determine the adsorbent 
dosage required (Purkait et al., 2006; Zheng et al., 2017).  

In this study, to describe the adsorption equilibrium, Langmuir and Freundlich isotherm models 
were used to fit the experimental results for the AY11 adsorption onto NB, AMCB and AMNB. All 
isotherms can be linearized, and then the parameters can be determined graphically or by linear 
regression (Periasamy and Namasivayam, 1995; Otker and Akmehmet-Balcoglu, 2005).  

 
Fig. 6. Effect of initial concentration of AY11 and temperature on the amount (dose of adsorbent = 1g/L, contact 

time = 60 min) 

The Langmuir isotherm is applicable to homogeneous sorption, where the sorption of each sorbate 
molecule onto the surface has equal sorption activation energy. The isotherm properties by fitting 
Langmuir and Freundlich equations are shown in Table 3. As can be seen, the RL values obtained when 
fitting the Langmuir equation were less than 1, indicating the great affinity of the NB, AMCB and AMNB 
for AY11. The magnitude of the exponent n gives an indication of the favorability of adsorption when 
fitting the Freundlich equation. Generally, n in the range 2–10 represents good, 1–2 represents 
moderately difficult, and less than 1 represents poor adsorption characteristics. The Freundlich equation 
describes heterogeneous systems and reversible adsorption. This is not restricted to the formation of 
monolayers. The isotherms model results of three samples showed similar rules: the correlation 
coefficients (R2) of the linear form of the Langmuir model were higher than those of the Freundlich 
model, which means that the adsorption process of AY11 onto NB, AMCB, and AMNB follow the 
Langmuir model better. The thermodynamic model results of three samples showed similar behavior: 
the adsorption process has a spontaneous nature as indicated by the negative values of ΔG°. Physical 
adsorption may have played an important role in AY11 uptake for the ΔG° values in the range of –20 to 
0 kJ·mol-1 (Li et al., 2011). The positive value of ΔH° reveals endothermic adsorption, and this is in 
agreement with the expected higher negative values of ΔG° at higher temperatures. The positive value 
of ΔS° suggests increased randomness at the solid–solution interface during the adsorption (Acemioglu, 
2004). 

The thermodynamic parameters provide in-depth information on the energetic changes associated 
with the adsorption process, and the adsorption thermodynamic parameters of the three samples are 
shown in Table 4. 

Table 3. Isotherm properties of AY11 adsorption when fitting Langmuir and Freundich equations 

308 K 
Langmuir  Freundich 

Qm,ca. (mg/g) KL (L/mg) R2 RL  KF (mg/g)/ (mg/L)1/n n R2 
NB 29.50 3.832 × 10-3 0.9882 0.77–0.96  0.072 0.84 0.9700 

AMCB 25.84 4.468 × 10-3 0.9970 0.74–0.96  0.128 1.04 0.9915 
AMNB 50.25 6.642 × 10-3 0.9961 0.65–0.94  0.436 1.16 0.9915 
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Table 4. Thermodynamic parameters for the adsorption 

Sample 
ΔG (kJ·mol-1) 

ΔS (J·K-1mol-1) ΔH (kJ·mol-1) 
286 K 298 K 308 K 

NB –3.97 –4.43 –4.73 16.02 6.18 
AMCB –4.83 –5.32 –5.58 18.77 6.31 
AMNB –2.61 –3.10 –3.86 13.52 11.17 

3.4. Adsorption mechanisms 

The test results of CEC, SV and Qm are shown in Fig. 7. Comparing the SV of BC and NB, it can be 
seen that the swelling performance of bentonite was significantly improved by sodium modification, 
and the swelling performance of NB was 640% that of BC. This means that the degree of dispersion of 
NB particles in water is much higher than that of BC. Meanwhile, after the Na-modified bentonite 
particles are dispersed in water, the water–soil system formed has high stability. In addition, BS-12 
modification can also improve the swelling properties of bentonite. The swelling capacity of AMNB 
increased by more than 50% compared with NB, and that of AMCB increased by 165% compared with 
BC. This indicates that amphoteric modification can greatly improve the dispersion property of 
bentonite and improve the stability of the water–soil system. However, by comparing the SV of AMNB 
and AMCB, it can be seen that the effects of sodium modification on the dispersion properties of 
bentonite was greater than that of ambidextrous amphoteric modification. At the same time, Fig. 7 
shows the positive correlation between bentonite's adsorption capacity for AY11 and swelling 
performance—the higher the swell volume (SV), the stronger the adsorption capacity (Qm). For 
bentonite, the higher the swelling performance and the better the dispersibility, the more favorable it is 
for the occurrence of adsorption, which is consistent with the test results. It follows that the effects of 
sodium modification on the swelling performance of bentonite is particularly significant. Therefore, in 
order to improve the adsorption of bentonite, the pretreatment of sodium modification is necessary.  

To better understand the effect of modification on bentonite, the electro-kinetic phenomenon of 
mineral suspensions was investigated. Fig. 8 shows the zeta potential of four samples as a function of 
pH.  

In the pH range of 2–8, the surface of four samples always accumulated negative charges. With the 
increase in pH, the negative charge on the surface of the particles showed an increasing trend, and the 
change trend of the surface charge of the four samples was consistent. By comparing the surface zeta 
potential changes in BC and NB, it can be found that sodium modification greatly increases the amount 
of surface negative charge of bentonite. The larger the surface potential, the stronger the electrostatic 
repulsion between the colloidal particles, the less the possibility of mutual aggregation and 
precipitation, and the better the stability of the system. The zeta potential changes and the swelling 
capacity  of NB and BC are consistent with this rule (Barast et al., 2017). After the modification of BS-12, 

 
Fig. 7. CEC, SV, Qm of the four samples 
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Fig. 8. Zeta potentials of the four samples 

the negative surface charges of BC and NB were reduced, indicating that BS-12 had similar effects on 
BC and NB. On the other hand, although the surface electronegative properties of AMNB and AMCB 
are weaker than those of NB and BC, their swelling performance is stronger, indicating that the stability 
of organic modified bentonite in the water–soil system no longer depends only on the ions’ charge. After 
the intercalation of organic modifiers, the colloidal swelling in bentonite's swelling mechanism is 
amplified. Therefore, although the negative charges on the surface of AMCB and BC decreased 
compared to AMNB and NB, their swell volume increased (Yang, 2018). 

The FT-IR spectra of the four samples are shown in Fig. 9. It can be seen from Fig. 9 that the FT-IR 
spectra of the four samples have many similarities—of which, in the high-frequency region, the 
absorption band at about 3617 cm-1 belongs to the stretching vibration mode of OH- in montmorillonite 
Al-Al-OH and Al-Mg-OH (νOH-A) (Bianchi et al., 2013). The interlaminar water stretching vibration of 
montmorillonite is around 3418 cm-1, while the bending vibration is around 1637 cm-1, and the 
absorption band is strong (Dawodu and Akpomie, 2014). The infrared absorption band at 1035 cm-1 is 
attributed to the Si-O stretching vibration modes in Si-O-Si, Si-O-Al, and SiO2 in montmorillonite (νSi-O-

B) (Madejova, 2003). The infrared absorption band at 916 cm-1 is attributed to the bending vibration 
mode of OH- in montmorillonite Al-Al-OH (δOH- 1-A) (Slany et al., 2019).The infrared absorption band at 
845 cm-1 is attributed to the bending vibration mode of OH- in montmorillonite Al-Mg-OH (δH- 2-A). The 
infrared absorption band at 789 cm-1 is attributed to Si-O-Si symmetric stretching mode corresponding 
to SiO2 in montmorillonite (νO- Si-O-A) (Santos et al., 2020a). The band at 520 cm-1 represents the coupling 
vibration of Si-O-M (M means cation) at the octahedron of montmorillonite (Zhu et al., 2016) and the 
absorption band at 466 cm-1 represents the bending vibration of Si-O-Si (δSi-O-Si) (Saidi et al., 2012). These 
absorption bands are generated by Si-O vibration, OH and interlayer water vibration, and Mg-O/Al-O 
vibration in bentonite, and they are observed in the infrared spectrum of bentonite (Madejova, 2003).  

The differences in the FT-IR spectra of the four samples are as follows: Compared with BC, the wide 
absorption band of NB at 1454 cm-1 belongs to the CO32- stretching vibration mode, which is caused by 
the Na2CO3 in the sodium modification (Yang et al., 2020). The spectra of NB and BC are very similar, 
especially in the low-frequency region of the lattice bending vibration band, the peak shape and 
intensity are almost identical, indicating that Na+ only replaces the Ca2+ between the layers of 
montmorillonite in BC, but has no effect on Mg2+ and Al3+ in the montmorillonite lattice. In the AMCB 
and AMNB spectra, -CH-symmetric (νsCH) and anti-symmetric (νasCH) stretching vibration bands appear 
at 2926 cm-1 and 2854 cm-1 in the intermediate frequency region (Ren et al., 2018), indicating that BS-12 
was inserted between montmorillonite layers. The AMNB spectrum has a small absorption peak at 722 
cm-1, which is attributed to the out-of-plane bending vibration peak (ωCH) of the carbon chain -CH2-
(Santos et al., 2020b). 

Three small and dense finger-type absorption peaks at 1464 cm-1, 1435 cm-1, and 1407 cm-1 belong to 
-CH- bending vibrations in the carbon chain. Among them, 1464 cm-1 is the in-plane bending vibration 
peak (NCH) of -CH at CH3-CH2- in the carbon chain (Xiao et al., 2020b). These absorption bands are 
common in hydrocarbons. Both the wide absorption band at 1333 cm-1 and the absorption peak at 1549 
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cm-1 belong to the stretching vibration of C = O (νC = O) in the carboxylate group -COO-, which is also 
proof of the intercalation of BS-12 to montmorillonite of NB (Lapo et al., 2020).  

Comparing the FT-IR spectra of the four samples, the vibration of Al-O (OH) -Al and Si-Mg of the 
clay octahedral in the low-frequency lattice bending vibration band did not change significantly, 
indicating that, for the composition of silicate in the interlayer domain, changes have taken place, but 
the basic silicate skeleton vibration has not changed and maintains the original structural state.  

 
Fig. 9. FT-IR spectra of the four samples 

According to the adsorption results and the test results of Fig. 7–9, the sodium modification 
improved the CEC of NB compared with that of BC, resulting in a stronger negative charge on the NB 
surface than that of BC. Strong surface electronegativity increases the repulsion between 
montmorillonite particles, enhances dispersion, and increases the swelling capacity. The replacement of 
interlayer hydrated calcium ions by sodium ions is the root cause of this series of changes, However, it 
should be noted that, since the adsorption of NB on AY11 is  not an ion exchange adsorption caused by 
the increase in CEC, the change in the type of interlayer hydrated cations is not the cause of the change 
in the absorption performance of bentonite to AY11. The surface of montmorillonite is very hydrophilic. 
When the two particles are close to each other, a strong hydration repulsion force is generated, which 
hinders the aggregation of the particles (Yang et al., 2017). The hydration energy of calcium ions 
between layers of natural calcium bentonite is less than that of sodium ions, so when it is dispersed in 
water, the hydration repulsion force on the particle surface is lower than that of natural sodium 
bentonite and sodium-modified bentonite, which is reflected in its lower swelling capacity and poor 
water absorption (Barast et al., 2017). Under the dual effects of poor dispersibility and negative surface 
charge, it is extremely difficult for AY11, an organic compound with an anionic group, to come into 
contact with the surface of the montmorillonite particles, so BC showed extremely poor adsorption to 
AY11. As shown in Fig. 10, after sodium modification, Na+, which has a large hydration energy between 
the crystalline layers, escapes from the interlayer space when it comes into contact with water, 
weakening the bonding force between crystal layers, which enables the H2O molecule to be inserted 
into the layers and increases the layer spacing sharply, making the mineral particles swell rapidly. On 
the other hand, each unit cell of montmorillonite contains 0.25–0.60 structural negative charges, so a 
large number of cations are adsorbed on the surface of montmorillonite. These cations diffuse into the 
solution in the aqueous solution, forming an electric double layer on the particle surface. The surfaces 
of adjacent particles are negatively charged and repel each other, which increases the spacing between 
the particles and causes the volume of the clay particles to expand. The increase in CEC and the increase 
in the surface negative electricity signify that the number of cations attached to the montmorillonite 
surface has increased during the sodium modification process, which makes the electric double layer 
on the surface of the NB particles more repulsive and further improves the swelling performance of 

4000 3500 3000 1500 1000 500

Tr
an

sm
itt

an
ce

 (a
.u.

)

1454

NB

722

1035

1333

1407

AMNB

AMCB

466
520

789
845

916

1435
1464

15491637

2854
2926

34183617

BC

Wave number/cm-1



13 Physicochem. Probl. Miner. Process., 57(1), 2021, 1-17 

bentonite. Sodium modification increased the swelling capacity of the bentonite several times, released 
the large internal surface area of the montmorillonite particles and greatly increased the probability of 
AY11 contacting montmorillonite particles and adsorbing to the montmorillonite surface under the 
action of van der Waals force (Yang, 2018). Therefore, compared with BC, NB shows a better adsorption 
capacity for AY11. 

According to FT-IR spectroscopy, it was found that the inter-layer organic content of AMCB is 
limited, while the inter-layer organic content of AMNB is much higher. There are two reasons for this 
phenomenon. On the one hand, the poor hydration properties of calcium-based bentonite make the 
interlayer space limited, which is not conducive to the exchange and replacement of calcium ions by BS-
12 entering the interlayer. However, the bentonite interlayer domain after sodium modification is fully 
expanded and the internal surface area is increased, which increases the chance of BS-12 entering the 
interlaminar region and exchanging with cations. On the other hand, the larger hydration of sodium 
ions makes it easier for sodium ions to overflow from the interlayer space of Na-modified bentonite 
than for calcium ions to overflow from the interlayer space of calcium-based bentonite, which increases 
the probability of being replaced by BS-12. The amphoteric surface modifier BS-12 has a hydrophobic 
carbon chain and two hydrophilic groups with positive and negative charges, respectively. After 
modification by BS-12, the hydrophilic group of BS-12 is combined with the surface of bentonite, and 
its long hydrocarbon chain hydrophobic group extends outward, forming an organic phase on the 
surface of the bentonite, which makes the surface of the bentonite have a certain degree of 
hydrophobicity. AY11 molecules are easily adsorbed on the surface of modified bentonite, so the 
adsorption capacity of the modified bentonite to AY11 is greatly increased compared with unmodified 
bentonite (Meng et al., 2008)． 

 

Fig. 10. Schematic of modification mechanism 

4. Conclusions 

The effects of sodium modification pretreatment on the amphoteric modification of calcium bentonite 
was studied by the evaluation standard of the adsorbability of anionic dye AY11. Natural calcium 
bentonite does not absorb anionic dyes easily, but amphoteric modification can improve the adsorption 
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capacity of anionic dyes, and sodium modification also has the same effect. The adsorption capacity of 
calcium bentonite can be improved by sodium–amphoteric modification (AMNB), which is evidently 
better than that of amphoteric organic modified calcium bentonite (AMCB) and sodium modification 
bentonite (NB). The natural calcium-based bentonite has poor dispersibility and hydration 
performance, and a large amount of negative charges are accumulated on the particle surface, making 
it difficult for AY11 to adsorb on the particle surface; therefor it demonstrated poor adsorption 
performance. The sodium modification expanded the interlayer space and released the internal surface 
area of the particles, which greatly increased the probability of AY11 contacting with montmorillonite 
particles and adsorption with montmorillonite under the action of van der Waals force. The adsorption 
mechanism research shows that the adsorption mechanism of AMNB and AMCN for AY11 is different 
from that of NB. The adsorption of AY11 by NB takes place on the exterior surface of the adsorbent and 
proceeds rapidly. BS-12 adsorbs on the bentonite surface through the combination of a hydrophilic 
group and permanent negative charge on the bentonite surface and replaces a part of the interlayer 
hydrated cation. Its outwardly extending hydrophobic carbon chain forms an organic phase on the 
surface of bentonite, with the result that AY11 is adsorbed by the amphoteric bentonite. In the process 
of amphoteric modification, the pretreatment of sodium modification also played a similarly positive 
role in the release of interlayer space; however, since the hydration energy of Na+ is greater than that of 
Ca2+, when Ca2+ is replaced by Na+, Na+ is more likely to escape from the interlayer space and exchange 
with the modifier. Therefore, the amphoteric bentonite pretreated by sodium modification has a higher 
organic content in the interlayer than that of amphoteric bentonite without pretreatment, and the 
hydration performance, dispersion performance, and adsorption performance are significantly 
improved. 

The findings of this investigation suggest that the pretreatment of sodium modification is positive 
and necessary for sodium–amphoteric modification. 

References 
ACEMIOĞLU, B., 2004. Adsorption of congo red from aqueous solution onto calcium-rich fly ash. Journal of Colloid and 

Interface Science. 274(2), 371-379. 
AFOLABI, R.O., ORODU, O.D., EFEOVBOKHAN, V.E., 2017. Properties and application of nigerian bentonite clay 

deposits for drilling mud formulation: recent advances and future prospects. Applied Clay Science. 143, 39-49. 
AMIN, N.K., 2009. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from 

pomegranate peel: adsorption equilibrium and kinetics. Journal of Hazardous Materials. 165(1-3), 52-62. 
ARELLANO-CÁRDENAS, S., LÓPEZ-CORTEZ, S., CORNEJO-MAZÓN, M., MARES-GUTIÉRREZ, J.C., 2013. 

Study of malachite green adsorption by organically modified clay using a batch method. Applied Surface Science. 280, 
74-78. 

ARONSON, J.L., LEE, M., 1986. K/ar systematics of bentonite and shale in a contact metamorphic zone, cerrillos, new 
mexico. Clays and Clay Minerals. 34(4), 483-487. 

BARAST, G., RAZAKAMANANTSOA, A., DJERAN-MAIGRE, I., NICHOLSON, T., WILLIAMS, D., 2017. Swelling 
properties of natural and modified bentonites by rheological description. Applied Clay Science. 142, 60-68. 

BELOUSOV, P.E., KRUPSKAYA, V.V., 2019. Bentonite clays of russia and neighboring countries. Georesursy. 21(3), 79-
90. 

BENITO, R., GARCIA-GUINEA, J., VALLE-FUENTES, F.J., RECIO, P., 1998. Mineralogy, geochemistry and uses of the 
mordenite–bentonite ash-tuff beds of los escullos, almerı́a, spain. Journal of Geochemical Exploration. 62(1-3), 229-
240. 

BIANCHI, A.E., FERNÁNDEZ, M., PANTANETTI, M., VIÑA, R., TORRIANI, I., SÁNCHEZ, R.M.T., PUNTE, G., 
2013. Odtma+ and hdtma+ organo-montmorillonites characterization: new insight by waxs, saxs and surface charge. 
Applied Clay Science. 83-84, 280-285. 

DAWODU, F.A., AKPOMIE, K.G., 2014. Simultaneous adsorption of ni(ii) and mn(ii) ions from aqueous solution unto a 
nigerian kaolinite clay. Journal of Materials Research and Technology. 3(2), 129-141. 

EBRAHIMI, A., ARAMI, M., BAHRAMI, H., PAJOOTAN, E., 2013. Fish bone as a low-cost adsorbent for dye removal 
from wastewater: response surface methodology and classical method. Environmental Modeling & Assessment. 18(6), 
661-670. 

GEORGIN, J., DOTTO, G.L., MAZUTTI, M.A., FOLETTO, E.L., 2016. Preparation of activated carbon from peanut shell 



15 Physicochem. Probl. Miner. Process., 57(1), 2021, 1-17 

by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions. Journal of 
Environmental Chemical Engineering. 4(1), 266-275. 

General administration of quality supervision, inspection and quarantine of the People's Republic of China and 
Standardization administration of the People's Republic of China, Method for the determination of whiteness, acidity 
and swelling capacity of granular bentonite for export, SNT 0990-2001 

General administration of quality supervision, inspection and quarantine of the People's Republic of China and 
Standardization administration of the People's Republic of China, Bentonite, GB/T 20973-2007 

HAGHSERESHT, F., WANG, S., DO, D.D., 2009. A novel lanthanum-modified bentonite, phoslock, for phosphate removal 
from wastewaters. Applied Clay Science. 46(4), 369-375. 

HAMEED, B.B., ISMAIL, Z.Z., 2020. Biodegradation of reactive yellow dye using mixed cells immobilized in different 
biocarriers by sequential anaerobic/aerobic biotreatment: experimental and modelling study. Environmental 
Technology., 1-20. 

HO, Y.S., MCKAY, G., 1999. Pseudo-second order model for sorption processes. Process Biochemistry. 34(5), 451-465. 
HOU, M., MA, C., ZHANG, W., TANG, X., FAN, Y., WAN, H., 2011. Removal of rhodamine b using iron-pillared 

bentonite. Journal of Hazardous Materials. 186(2-3), 1118-1123. 
KIRALI, E.G., LAÇIN, O., 2006. Statistical modelling of acid activation on cotton oil bleaching by turkish bentonite. Journal 

of Food Engineering. 75(1), 137-141. 
LAPO, B., BOU, J.J., HOYO, J., CARRILLO, M., PEÑA, K., TZANOV, T., SASTRE, A.M., 2020. A potential 

lignocellulosic biomass based on banana waste for critical rare earths recovery from aqueous solutions. Environmental 
Pollution. 264, 114409. 

LEODOPOULOS, C., DOULIA, D., GIMOUHOPOULOS, K., 2015. Adsorption of cationic dyes onto bentonite. 
Separation & Purification Reviews. 44(1), 74-107. 

LI, Y., DU, Q., LIU, T., QI, Y., ZHANG, P., WANG, Z., XIA, Y., 2011. Preparation of activated carbon from enteromorpha 
prolifera and its use on cationic red x-grl removal. Applied Surface Science. 257(24), 10621-10627. 

LUM, P.T., FOO, K.Y., ZAKARIA, N.A., PALANIANDY, P., 2020. Ash based nanocomposites for photocatalytic 
degradation of textile dye pollutants: a review. Materials Chemistry and Physics. 241, 122405. 

MADEJOVÁ, J., 2003. Ftir techniques in clay mineral studies. Vibrational Spectroscopy. 31(1), 1-10. 
MALIK, P.K., 2004. Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium 

and kinetics. Journal of Hazardous Materials. 113(1-3), 81-88. 
MENG, Z., ZHANG, Y., ZHANG, Z., 2008. Simultaneous adsorption of phenol and cadmium on amphoteric modified soil. 

Journal of Hazardous Materials. 159(2-3), 492-498. 
MENG, Z., ZHANG, Y., WANG, G., 2007. Sorption of heavy metal and organic pollutants on modified soils. Pedosphere. 

17(2), 235-245. 
MITCHELL, C.E., ADHYA, S., BERGSTRÖM, S.M., JOY, M.P., DELANO, J.W., 2004. Discovery of the ordovician 

millbrig k-bentonite bed in the trenton group of new york state: implications for regional correlation and sequence 
stratigraphy in eastern north america. Palaeogeography, Palaeoclimatology, Palaeoecology. 210(2-4), 331-346. 

Ministry of Ecology and Environment of the People's Republic of China, Discharge standards of water pollutants for 
dyeing and finishing textile industries, GB 4287-2012 

Ministry of Ecology and Environment of the People's Republic of China, Self-monitoring technology guidelines for 
pollution sources - Textile and dyeing industry, HJ 879-2017 

Ministry of Ecology and Environment of People's Republic of China, Technical guidelines of accounting method for 
pollution source intensity textile and dyeing industry, HJ 990-2018 

Ministry of Industry and Information Technology of the People's Republic of China, 2019. List of enterprises in 
accordance with the standards of dyeing industry (2017 edition). 

National Bureau of Statistics of People's Republic of China, 2019. China statistical yearbook-2019. China statistics 
press. 

National Bureau of Statistics of the People's Republic of China, 2020. Statistical communiqué of the people's republic of 
china on national economic and social development 2019. 

OLIVEIRA, J.M.S., de LIMA E SILVA, M.R., ISSA, C.G., CORBI, J.J., DAMIANOVIC, M.H.R.Z., FORESTI, E., 2020. 
Intermittent aeration strategy for azo dye biodegradation: a suitable alternative to conventional biological treatments? 
Journal of Hazardous Materials. 385, 121558. 

ÖTKER, H.M., AKMEHMET-BALCıOĞLU, I., 2005. Adsorption and degradation of enrofloxacin, a veterinary antibiotic 
on natural zeolite. Journal of Hazardous Materials. 122(3), 251-258. 



16 Physicochem. Probl. Miner. Process., 57(1), 2021, 1-17 

PERIASAMY, K., NAMASIVAYAM, C., 1995. Removal of nickel(ii) from aqueous solution and nickel plating industry 
wastewater using an agricultural waste: peanut hulls. Waste Management. 15(1), 63-68. 

PURKAIT, M., DASGUPTA, S., DE, S., 2006. Micellar enhanced ultrafiltration of eosin dye using hexadecyl pyridinium 
chloride. Journal of Hazardous Materials. 136(3), 972-977. 

RAWAJFIH, Z., NSOUR, N., 2006. Characteristics of phenol and chlorinated phenols sorption onto surfactant-modified 
bentonite. Journal of Colloid and Interface Science. 298(1), 39-49. 

SAIDI, R., TLILI, A., FOURATI, A., AMMAR, N., OUNIS, A., JAMOUSSI, F., 2012. Granulometric distribution of 
natural and flux calcined chert from ypresian phosphatic series of gafsa-metlaoui basin compared to diatomite filter aid. 
Iop Conference Series: Materials Science and Engineering. 28, 12027. 

SANTOS, S.S.G., FRANÇA, D.B., CASTELLANO, L.R.C., TRIGUEIRO, P., SILVA FILHO, E.C., SANTOS, I.M.G., 
FONSECA, M.G., 2020a. Novel modified bentonites applied to the removal of an anionic azo-dye from aqueous solution. 
Colloids and Surfaces A: Physicochemical and Engineering Aspects. 585, 124152. 

SANTOS, S.S.G., FRANÇA, D.B., CASTELLANO, L.R.C., TRIGUEIRO, P., SILVA FILHO, E.C., SANTOS, I.M.G., 
FONSECA, M.G., 2020b. Novel modified bentonites applied to the removal of an anionic azo-dye from aqueous solution. 
Colloids and Surfaces A: Physicochemical and Engineering Aspects. 585, 124152. 

SLANÝ, M., JANKOVIČ, =., MADEJOVÁ, J., 2019. Structural characterization of organo-montmorillonites prepared from 
a series of primary alkylamines salts: mid-ir and near-ir study. Applied Clay Science. 176, 11-20. 

VANHULLE, S., TROVASLET, M., ENAUD, E., LUCAS, M., TAGHAVI, S., van der LELIE, D., van AKEN, B., 
FORET, M., ONDERWATER, R.C.A., WESENBERG, D., AGATHOS, S.N., SCHNEIDER, Y., CORBISIER, A., 
2008. Decolorization, cytotoxicity, and genotoxicity reduction during a combined ozonation/fungal treatment of dye-
contaminated wastewater. Environmental Science & Technology. 42(2), 584-589. 

VIVES, M.T., BALAGUER, M.D., GARCÍA, S., GARCÍA, R., COLPRIM, J., 2003. Textile dyeing wastewater treatment 
in a sequencing batch reactor system. Journal of Environmental Science and Health, Part A. 38(10), 2089-2099. 

WANG, T., TANG, X., ZHANG, S., ZHENG, J., ZHENG, H., FANG, L., 2020. Roles of functional microbial flocculant 
in dyeing wastewater treatment: bridging and adsorption. Journal of Hazardous Materials. 384, 121506. 

WANG, Z., XUE, M., HUANG, K., LIU, Z., 2011. Textile dyeing wastewater treatment. InTech, Rijeka, Croatia. 
XIAO, F., YAN, B., ZOU, X., CAO, X., DONG, L., LYU, X., LI, L., QIU, J., CHEN, P., HU, S., ZHANG, Q., 2020a. 

Study on ionic liquid modified montmorillonite and molecular dynamics simulation. Colloids and Surfaces A: 
Physicochemical and Engineering Aspects. 587, 124311. 

XIAO, F., YAN, B., ZOU, X., CAO, X., DONG, L., LYU, X., LI, L., QIU, J., CHEN, P., HU, S., ZHANG, Q., 2020b. 
Study on ionic liquid modified montmorillonite and molecular dynamics simulation. Colloids and Surfaces A: 
Physicochemical and Engineering Aspects. 587, 124311. 

YANG, Y., SUN, C., LIN, B., HUANG, Q., 2020. Surface modified and activated waste bone char for rapid and efficient vocs 
adsorption. Chemosphere. 256, 127054. 

YUAN, Y., NING, X., ZHANG, Y., LAI, X., LI, D., HE, Z., CHEN, X., 2020. Chlorobenzene levels, component distribution, 
and ambient severity in wastewater from five textile dyeing wastewater treatment plants. Ecotoxicology and 
Environmental Safety. 193, 110257. 

ZHENG, R., GAO, H., REN, Z., CEN, D., CHEN, Z., 2017. Preparation of activated bentonite and its adsorption behavior 
on oil-soluble green pigment. Physicochemical Problems of Mineral Processing. 53(2), 829-845. 

ZHU, K., JIA, H., WANG, F., ZHU, Y., WANG, C., MA, C., 2016. Efficient removal of pb(ii) from aqueous solution by 
modified montmorillonite/carbon composite: equilibrium, kinetics, and thermodynamics. Journal of Chemical and 
Engineering Data. 62(1), 333-340. 

ZHUANG, X., WAN, Y., FENG, C., SHEN, Y., ZHAO, D., 2009. Highly efficient adsorption of bulky dye molecules in 
wastewater on ordered mesoporous carbons. Chemistry of Materials. 21(4), 706-716. 

LI, T., 2012. Equilibrium adsorption characteristics of amphoteric modified bentonites to cd (ii) and phenol. Northwest A&F 
University, p. 69. 

LIANG, L., 2020. Dyeing of annual inventory: green development into industry consensus. China Textile. (01), 28. 
PANG, Y., DING, Y., SUN, B., LV, X., 2008. Preparation and physicochemical properties of bentonite modified by cetyl 

trimethyl ammonium. Journal of Liaoning Normal University (Natural Science Edition). (03), 322-325. 
REN, S., MENG, Z., WANG, T., ZHANG, Y., TIAN, K., 2018. Comparison of amphoteric-cationic and amphoteric-anionic 

modified magnetic bentonites: characterization and sorption capacity oh phenol. Environmental science. Environmental 
Science. 39(01), 187-194. 

SUN, H., ZHU, L., 2010. The performance of the hdtma-aet modified bentonite as a sorbent for cd and p-nitrophenol. Acta 



17 Physicochem. Probl. Miner. Process., 57(1), 2021, 1-17 

Scientiae Circumstantia. 30(05), 1037-1042. 
WU, X., YUAN, P., PENG, C., 2016. The development status, main problems and suggestions of bentonite industry in china. 

The World of Building Materials. 03(37), 27-30. 
YAN, P., HAO, W., GAO, T., 2004. Chemistry of fine chemicals. Chemical Industry Press, Beijing. 
YANG, Z., 2018. Quantum chemical study on inhibiting the expansion and dissolution of montmorillonite in slime water 

system. China University of Mining & Technology, p. 146. 
YANG, Z., LIU, W., JIAO, X., REN, Z., 2017. Calculation of electrostatic interaction energy by using zeta potential in 

montmorillonite dispersion system. Journal of china coal society. 42(06), 1572-1578. 


