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Abstract: The use of commercial sponges in materials science has gained much recent attention. Their 
unique properties, namely a fibrous, rigid skeleton, thermal stability and resistance to acid and basic 
hydrolysis, have been the primary motivation to use them in the development of new composites. In 
this work, a simple method of immobilization of cobalt and silver cations, followed by their reduction 
using sodium borohydride, was successfully applied for the first time to obtain functionalized spongin 
scaffolds. Three different materials, labeled Co_spongin, Ag_spongin and Co-Ag_spongin, were 
prepared. Their morphological and physicochemical properties were explored using various techniques 
(SEM+EDS, TG/DTA, FTIR). The focal point of the research was the application of the resulting 
materials in the reaction of 4-nitrophenol reduction with sodium borohydride in water. It was found 
that all of the composites possess superior activity in the reduction of 4-nitrophenol, achieving high rate 
constants of 0.31 min-1 for Ag_spongin, 0.52 min-1 for Co_spongin and 0.86 min-1 for Co-Ag_spongin. 
Reusability tests showed that all of the composites could be reused five times. Additional structural 
analysis after catalytic application showed no visible changes in the morphology of the catalysts. The 
results indicate that spongin can be considered as a facile, cost-effective, renewable and environmentally 
friendly three-dimensional support for use in heterogeneous catalysis. 
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1. Introduction 

Sponges (phylum Porifera), being among the world’s oldest and simplest animals, are currently the 
subject of intensive investigation (Boury-Esnault et al., 2013). Especially commonly studied are 
representatives of the class Demospongiae, due to their characteristic fibrous skeletons built from chitin 
or spongin as the main organic component. Spongin is a fascinating protein with a still unknown 
chemical structure, although it contains the same amino acids already described in collagen and keratin. 
Their presence is responsible for the rigid framework of the sponge skeleton, which creates an 
extraordinary system of anastomosed open-porous channels (Ehrlich et al., 2003; Pallela et al., 2011). 
This unique dendritic structure enhances the mechanical properties of the sponge skeleton. 

Additionally, the chemical and thermal stability of spongin are similar to those of keratin, which 
means that spongin is resistant to mild acid and basic hydrolysis and enzymatic treatment, and it is 
thermally stable up to 150 °C (Jesionowski et al., 2018). Moreover, the development of marine ranching 
methods for the cultivation of spongin-based sponges as commercial products makes them a novel, 
renewable source of naturally prefabricated three-dimensional proteinaceous scaffolds with promising 
applications in materials science (Jesionowski et al., 2018). However, it is important to understand the 
difference between the commonly used terms: sponge, sponge skeleton and commercial sponge. According 
to Jesionowski et al. (2018), the term sponge refers to the whole organism: body and skeleton. The skeleton 
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is the cell-free, demineralized and depigmented skeletal construct, while commercial sponge refers to 
a sponge skeleton built from spongin. These commercial sponges are the main source for the sponge 
industry (Jesionowski et al., 2018). 

Due to the aforementioned structural, chemical and mechanical properties, spongin matrices from 
various representatives of Demospongiae are currently under examination for purposes of tissue 
engineering (Green et al., 2003), biomimetics and Extreme Biomimetics (Szatkowski and Jesionowski 
2017; Szatkowski et al., 2015, 2017, 2018). As an example, Szatkowski et al. synthesized two different 
hybrid materials with spongin, namely spongin–hematite (Szatkowski et al., 2015) and spongin–TiO2 
(Szatkowski and Jesionowski 2017; Szatkowski et al., 2017). As a result, both inorganic phases entirely 
covered the spongin fibers, which indicated the high affinity of spongin towards iron oxide and 
titanium dioxide. The spongin–TiO2 composite possessed good photocatalytic ability towards 
methylene blue dye, achieving a good yield of degradation. On the other hand, the spongin–hematite 
composite was utilized as an anode material in a capacitor, with satisfactory results. 

Commercial sponges have also been successfully applied as a support for enzyme immobilization 
(Zdarta et al., 2017). Moreover, evaluation of the ability of spongin to adsorb various dyes has led to the 
development of unique hybrid materials with antibacterial (Norman et al., 2016a), antiradical (Norman 
et al., 2016b) and photocatalytic properties. For example, spongin–iron phthalocyanine (Norman et al., 
2018) and spongin–copper phthalocyanine (Norman et al., 2016c) composites exhibited excellent activity 
in the degradation of Rhodamine B and of phenol and its halogenated derivatives. Both studies showed 
that spongin acts as an active support with weak photocatalytic activity, which can be significantly 
enhanced after successful immobilization of the dye. Recently, the carbonization of spongin has been 
developed (Petrenko et al., 2019; Szatkowski et al., 2018) as a method to produce fibrous, sponge-like 
carbon materials which can be applied as a component of advanced MnO2–carbon and Cu/Cu2O–
carbon composites with electrochemical properties (Szatkowski et al., 2019) or with catalytic activity in 
the reduction of 4-nitrophenol (Petrenko et al., 2019).  

It appears from the studies mentioned above that the most attention has been paid to the formation 
of photocatalysts or electrochemically active materials derived from spongin. Therefore, the motivation 
of this work was the development, for the first time, of composites based on spongin as a support for 
cobalt and silver particles, using a simple method of immobilization and reduction of adsorbed metal 
cations, followed by their utilization as heterogeneous catalysts in the reduction of 4-nitrophenol to 4-
aminophenol in water. A kinetic evaluation and a reusability study were important milestones of this 
work. Our results show that by applying a simple method, a novel composite with superior catalytic 
performance can be developed.  

2. Materials and methods 

2.1. Materials 

Specimens of the commercial marine sponge Hippospongia communis (Porifera: Demospongiae) were 
purchased from INTIB GmBh (Germany). Cobalt nitrate (CAS no. 10026-22-9) and silver nitrate 
(CAS no. 7761-88-8) were obtained from VWR (Germany), and 4-nitrophenol (CAS no. 100-02-7) and 
sodium borohydride (CAS no. 16940-66-2) were supplied by Sigma-Aldrich (Germany).  

2.2. Purification and preparation of commercial sponge 

The obtained commercial sponge skeletons were purified before functionalization to remove some 
foreign sand particles and calcium carbonate debris. The detailed purification methodology is described 
elsewhere (Norman et al., 2016ab). After cleaning, the commercial sponge skeletons were cut into pieces 
(4 cm x 4 cm x 4 cm) and subjected to the functionalization process.  

2.3. Functionalization of commercial sponge 

The functionalization process can be divided into two stages. The first stage was the immobilization of 
cobalt and silver ions on the commercial sponge. A piece of spongin (weight approximately 3 g) was 
placed in a conical flask and mixed with 100 cm3 of an aqueous solution of metal precursor: cobalt 
nitrate, silver nitrate, or a mixed solution of both precursors consisting of 50 cm3 Co(NO3)2 and 50 cm3 
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AgNO3. The concentration of silver and cobalt salt was 5 g/dm3. This mixture was shaken in 
a thermostated incubator (IKA Werke GmbH, Germany) for 60 minutes at temperature 25 °C. Then 
50 cm3 of sodium borohydride solution (concentration 0.1 mol/dm3) was dosed directly into the mixture 
using a peristaltic pump at a rate of 1 cm3/min, followed by further shaking for an additional 60 min. 
Next, the product was filtered under reduced pressure, washed with ethanol three times and dried at 
60 °C for 60 min. The immobilization and reduction procedure was repeated three times. After the third 
cycle, the prepared catalysts, labeled Co_spongin, Ag_spongin and Co-Ag_spongin, were subjected 
to ultrasonication treatment for 15 minutes and dried overnight at 60 °C. 

2.4. Physicochemical and structural analysis 

An EVO-40 microscope (Zeiss, Germany) was used to perform the scanning electron microscopy 
analysis. EDS X-ray microanalysis (Tescan, Czech Republic) was performed using Gamma-Tec 
instrumentation from Princeton Inc. (USA). Total reflection ATR-FTIR analysis was performed using 
Vertex apparatus (Bruker, Germany). Thermogravimetric analysis was carried out using the TGA/DTG 
method (Jupiter STA 449F3, Netzsch, Germany). Measurements were conducted under flowing 
nitrogen (20 cm3/min) at a heating rate of 10 °C/min over a temperature range of 25–1000 °C, with an 
initial sample weight of approximately 10 mg.  

2.5. Catalytic tests 

The model reduction reaction of 4-nitrophenol with sodium borohydride was used to determine the 
catalytic ability of the obtained hybrid materials. The reaction was performed in a 3 cm3 glass cuvette 
and monitored using a UV-Vis spectrophotometer (V-750 Jasco, Japan) in the wavelength range 250–
500 nm. 2.5 cm3 of 4-nitrophenol solution at concentration 0.001 mol/dm3, 0.5 cm3 of 0.01 mol/dm3 
solution of NaBH4 and 5 mg of the tested hybrid material were placed in a quartz cuvette. The UV-Vis 
spectra were monitored every 1 min until the disappearance of the band characteristic for the 
4-nitrophenolane anion (Amax=400 nm). The reduction efficiency was calculated from the obtained 
spectra based on the calibration curve method. 

Evaluation of the kinetics of 4-nitrophenol reduction was performed based on the zero-order and 
first-order kinetic models. Both of these models assumed a change in the concentration of 4-nitrophenol 
with time. The zero-order model is represented by the formula (1): 

!"
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= −𝑘 ∙ 𝑡                                                                            (1) 

For the first-order model, the general equation is written as follows (2):  

 ln	(!"
!#
) = ln	(𝐶/) − 𝑘 ∙ 𝑡                                                                 (2) 

where C0 and Ct represent the concentration of 4-nitrophenol at the initial time and at time t respectively 
(mol/dm3), k denotes the rate constant (min-1), and t is time (min). The rate constant is calculated from 
the slope of the corresponding plots. 

The stability and reusability properties of the prepared hybrid materials were also evaluated. For 
this purpose, 5 mg of the catalyst was repeatedly used five times in catalytic cycles. After every run, the 
catalyst was separated from the reaction mixture, washed three times with water and ethanol, and dried 
for 30 min at 60 °C in a dryer. The effect of reuse of the prepared hybrid materials on their structural 
properties was also evaluated using scanning electron microscopy analysis.  

3. Results and discussion 

3.1. Physicochemical and structural analysis  

A scanning electron microscope was used to investigate the effect of functionalization on the 
morphology and structure of the prepared spongin-based hybrid material. The SEM images obtained 
are shown in Fig. 1. 

The structure and morphology of the commercial sponge skeleton are well described in previously 
published papers (Norman et al., 2016abc; Szatkowski et al., 2015). The characteristic, hierarchical 
structure of fibers consisting of fibrils which interweave with each other, typical of species of sea spon- 
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Fig. 1. SEM images of Co_spongin (a, b), Ag_spongin (c, d) and Co-Ag_spongin (e, f) hybrid materials. Images 

at different magnifications  

ges belonging to the subclass Keratosa, is observed. The SEM images obtained after functionalization 
with cobalt and silver show significant alterations (Fig. 1). From Fig. 1a and b it is visible that the fibrillar 
structure of spongin is covered with semi-spherical and semi-square structures, which has a tendency 
to agglomerate. The size of agglomerates varies, but does not exceed 2 µm. Similar structures are also 
present in the fibers depicted in Fig. 1e and f. Metallization with silver (Fig. 1c and d) results in a material 
in which the fibers are covered with small and spherical silver particles, which exhibit a lower tendency 
towards the formation of large agglomerates than is observed for the cobalt structures. The visible 
agglomerates are smaller than 1 µm. When a bimetallic system was prepared, structures representing 
both phases were observed on the fibers of the resulting material (Fig. 1e and f). A similar morphology 
of the metallic phase, corresponding to Co3O4 grains, was observed in a study by Allaedini and 
Muhammad (2013), where sodium borohydride was also applied in the synthesis of Co3O4 particles. 

EDS mapping was carried out to investigate the chemical composition of the prepared hybrid 
materials (Fig. 2).  

As shown in Fig. 1b–e, the fibers of the prepared materials are evenly covered with the cobalt or 
silver metallic phase. In the case of both solids, the surface content of Co or Ag is similar, at approx. 83 
wt% (Fig. 2a). This indicates that spongin possesses similar affinity towards silver and cobalt. The 
difference in the content of oxygen between Co_spongin and Ag_spongin is insignificant. This result, 
together with knowledge of the Pourbaix diagram of cobalt and silver, suggests that for Co_spongin the 
metallic phase consists of cobalt and Co3O4, while for Ag_spongin it consists mainly of the silver phase 
(Garcia et al., 2008; Hans et al., 2016). The presence of iodine, bromine, sulfur, iron and silica is related 
to the proteinaceous nature of the spongin skeleton; these elements were also found in previous studies 
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Fig. 2. Surface composition of the prepared hybrid materials (a); SEM image of Co_spongin (b) with Co mapping 

(c); SEM image of Ag_spongin (d) with Ag mapping (e); Co mapping of Co-Ag_spongin (f), its SEM image (g) 
and its Ag mapping (h) 

(Jesionowski et al., 2018). The small amounts of calcium, magnesium and potassium can be explained 
by the marine origin of commercial sponge skeletons, and the small sodium content is derived from the 
reducer used during the synthesis. Surprisingly, for Co-Ag_spongin, the content of silver is much higher 
than that of cobalt. It seems that, when both cations are present during the synthesis, the spongin 
favorably binds silver. This is visible on the silver map, which shows fibers tightly covered by silver 
with the addition of cobalt. 

TGA/DTA analysis was used to investigate the effect of heat on the samples. The plots obtained are 
shown in Fig. 3.  

 
Fig. 3. TG (a) and DTA (b) plots obtained for spongin, Co_spongin, Ag spongin and Co-Ag_spongin 

In the case of spongin and all of the prepared composites, the TG curves exhibit two typical mass 
losses. The first occurred at a temperature of 130 °C (6% mass loss for all composites, 8% for spongin), 
being related to the evaporation of physically adsorbed water. The second mass loss, equal to 53.5% for 
Co_spongin, 65.5% for Ag_spongin, 53.1% for Co-Ag_spongin and 67% for spongin, occurred in the 
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temperature range 225–525 °C, and is attributed to the thermal decomposition of the spongin skeleton 
through the decomposition of protein bonds, disulfide bridges and hydrogen bonds. Interestingly, the 
thermal stability of all of the prepared materials is higher than for spongin itself, probably because the 
cobalt and silver particles control the thermal motion of the biopolymer matrix in the composite. This 
effect is especially prominent for the Co_spongin composite, which means that the presence of cobalt 
moieties enhances the thermal stability of the resulting material. Functionalization with silver does not 
have such a pronounced effect. The DTA plots revealed interesting features. For all examined samples, 
the first broad endothermic peak with a maximum at 330 °C can be associated with the evaporation of 
water and dehydroxylation of the spongin matrix. On the DTA plot for spongin, this peak is less 
strongly visible. The low intensity of endo/exo reactions observed for unmodified spongin may be 
associated with thermal inertia phenomena, which derive from the slow process of reaching equilibrium 
during the thermal treatment. The temperature of the second broad exothermic peak varies for different 
composites; it equaled 680 °C, 525 °C, 690 °C and 585 °C for Co_spongin, Ag_spongin, Co-Ag_spongin 
and spongin, respectively. This peak seems to be attributable to the release of methane, CH4S and SO2 
from the spongin matrix together with thermal transformation of the metallic phase. The third broad 
endothermic peak with maximal temperature varying from 820 to 840 °C may be ascribed to the further 
release of SO2 from the spongin matrix. Interestingly, combining silver and cobalt results in a rise in the 
transformation temperature and increases the intensity of this process. 

With regard to the possible utilization of the prepared composites as catalysts, it is essential to 
investigate the chemical moieties located on the surface of the material. For this purpose, ATR-FTIR 
analysis was performed. The plots obtained are shown in Fig. 4. 

 
Fig. 4. ATR-FTIR spectra of Co_spongin, Ag_spongin and Co-Ag_spongin compared with the spectrum 

of unmodified spongin 

The presented ATR-FTIR spectra exhibit some similarities with regard to the bands characteristic for 
spongin, whose FTIR spectrum is described in our previous work (Norman et al., 2016b; Szatkowski et 
al., 2017). A broad band in the wavenumber range 3300–3250 cm-1 can be distinguished, characteristic 
for the overlapping stretching vibrations of N–H amide groups and O–H groups. Bands derived from 
aliphatic stretching vibrations of C–H groups, slightly visible in the range 3050–2990 cm-1, overlap with 
a broad band corresponding to N–H and O–H groups. This is related to the existence of a hydrogen-
bonded molecule of water, and it may be correlated with the presence of hydroxyl groups of cobalt 
oxide in the case of Co_spongin and Co-Ag_spongin. The peak in the range 1650–1610 cm-1 derives from 
stretching vibrations of carbonyl groups. Interestingly, the wide band characteristic for stretching 
vibrations of CO–NH amide groups (1550–1450 cm-1) is absent only for Ag_spongin. However, only for 
that material and pure spongin, a peak resulting from stretching vibrations of aromatic Car=Car 
structures is observed at 1450 cm-1. The intense, broad band at 1340–1330 cm-1 can be assigned to 
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in-plane bending vibrations of OH groups. There is also a band characteristic for stretching vibrations 
of C–O bonds in alcohols at 1050 cm-1, not present in the spectrum of Co-Ag_spongin. The remaining 
signals in the range 1000–800 cm-1 can be ascribed to carbon moieties, especially C–C vibrations. The 
wide band in the range 540–530 cm-1 can be assigned to vibrations of C–S groups as well as C–Br and 
C–I halogen moieties. Due to strong overlapping, the Co–O vibrations for the samples Co_spongin and 
Co-Ag_spongin are not visible. It is important to note that the spongin surface is rich in carboxyl groups 
of amino acid residues, and peptide groups have a strong ability to bind silver and cobalt (Guo et al., 
2011; Mandal et al., 2012). Notably, it is reported that amine groups from cysteine can easily bind silver 
particles. Therefore, the formation of bonds between cobalt and silver ions and amine groups from 
cysteine is considered as a primary mechanism of immobilization of these particles before chemical 
reduction. 

3.2. Catalytic activity 

To evaluate the catalytic ability of the prepared spongin-based composites, the reduction 
of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using sodium borohydride in aqueous solution was 
carried out. This reaction is commonly applied to study the catalytic ability of metal particles (Noh and 
Meijboom 2014). The reduction of 4-nitrophenol to 4-aminophenol is thermodynamically possible 
(E0|4-NP/4-AP = −0.76 V, E0|H3BO3/BH4 = −1.33 V). However, this reaction does not take place without 
a catalyst due to kinetic barriers, principally the large difference in the potentials of the electron acceptor 
and donor. Therefore, the catalytic action of metal particles is related to the function of electronic relay 
systems, where electron transfer occurs from BH4– donor groups to nitro acceptor groups. As Fig. 5a 
illustrates, the addition of sodium borohydride leads to a red-shift of the absorption peak from 317 to 
400 nm, and the formation of the 4-nitrophenolane anion by deprotonation. The addition of 5 mg of the 
prepared catalyst to the reaction system results in the initiation of the reduction reaction, which is visible 
from the decrease in the intensity of the peak characteristic for the 4-nitrophenolane anion, with 
a simultaneous increase in the intensity of the peak corresponding to 4-aminophenol (Amax = 300 nm). 
Finally, the total reduction of 4-nitrophenol leads to decolorization of the initial yellow-green solution 
(Fig. 5b). 

 
Fig. 5. UV-Vis spectra of 4-nitrophenol and 4-nitrophnolane anion (a); the reaction mixture before reaction (left) 
and after the reduction (right) (b); UV-Vis spectra of ongoing reduction of 4-nitrophenol after addition of NaBH4 

in the presence of Co_spongin (c), Ag_spongin (d), Co-Ag_spongin (e) and spongin (f) 

Depending on the applied catalyst, after 5 min (Co_spongin) or 4 min (Ag_spongin and 
Co-Ag_spongin) the peak characteristic for the 4-nitrophenolane anion disappeared, indicating the end 
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of the reduction, which signifies 100% reduction efficiency. The shape of the spectra provides evidence 
that the 4-NP is gradually reduced and no additional products are formed during the reaction. It is 
important to note that the reduction reaction starts immediately after the introduction of the catalyst. 
This means that the induction period—described elsewhere (Gao et al., 2007; Pich et al., 2006) as 
a common issue when heterogeneous metallic catalysts are used—is not observed in our study. The 
absence of an induction period seems to be related to the fibrous structure with an interconnected 
microporous network, which provides satisfactory diffusion of substrates towards the surface of the 
catalyst. Besides, the size of the metallic phase also plays an important role and affects the presence of 
an induction period. In the case of the presented materials, the size of metallic grains does not exceed 
2 µm; however, good dispersion of the metallic particles on the spongin fibers results in easy access to 
their surface and counteracts the negative effect of the large size of the grains (Kuroda, Ishida, and 
Haruta 2009). The same reaction was also carried out in the presence of 5 mg of pure spongin skeleton 
(Fig. 5f). Surprisingly after 60 minutes of reaction, the reduction efficiency was 65%. The formation of 
4-aminophenol is confirmed by the presence of its characteristic absorbance peak. In this case also, no 
induction period is observed. This extraordinary catalytic ability may be linked to the chemical 
composition of spongin. The various functional groups, especially hydroxyl and amide, present in the 
structure of this material can enhance the sorption properties of reagents, and can also act as an electron 
relay system. However, such a long reaction time excludes the application of pure spongin as a catalyst. 
These results prove that functionalization with cobalt and silver leads to significant enhancement of 
catalytic ability, due to the formation of an effective electron relay system or by the catalytic activity of 
the metallic phases towards hydrogen evolution from NaBH4; therefore, the enhanced catalytic 
properties of the prepared composites are prominent (Garron et al., 2009). In addition, it is concluded 
that spongin can assist in the sorption of reagents and electron transfer. Thus, it can play the role of an 
“active support”. In the next step, the kinetic parameters of reduction were evaluated. According to the 
chemistry of this reaction, two models were considered: zero-order and first-order. The obtained rate 
constants and correlation coefficients are given in Table 2.  

Table 2. Kinetic parameters calculated for the reduction of 4-nitrophenol using various catalysts 

Catalyst 
Zero-order model First-order model 

k (min-1) R2 k (min-1) R2 

Co_spongin 0.09 0.971 0.52 0.994 

Ag_spongin 0.04 0.975 0.33 0.945 

Co-Ag_spongin 0.31 0.958 0.86 0.980 

It is apparent that good linear correlation was obtained using the first-order model. Because the 
initial concentration of sodium borohydride was much higher than that of 4-nitrophenol, it can be 
assumed to be constant. Therefore, the model is called pseudo-first-order. Surprisingly, the lowest rate 
constant (independently of the model used) was obtained for Ag_spongin, even when the reduction of 
4-nitrophenol using Co_spongin as catalyst lasted one minute longer. This result can be explained by 
the faster changes in concentration of 4-nitrophenol using the Co catalyst, and therefore, independently 
of reaction time, the calculated rate constant is higher. Some literature results provide evidence that 
strong interactions between the support and metal particles can hamper the reduction efficiency and 
negatively influence the rate of reduction (Liu, Yang, and Huang 2006; Liu, Yang, and Xie 2007). This 
suggests that the interaction between silver and cysteine groups, which is well documented, may 
negatively influence the catalytic ability of the Ag_spongin material. Not without significance is the fact 
that the highest rate constant was computed for the Co-Ag_spongin composite. This finding provides 
evidence that the combination of two metallic phases results in a more efficient catalyst, where the two 
phases act synergistically in the electron transport from the borohydride anion to the 4-nitrophenol 
molecule. A comparison of the present results with those previously reported in the literature is shown 
in Table 3. 
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Table 3. Comparison of kinetic parameters of the reduction of 4-nitrophenol computed for various cobalt- and 
silver-based catalysts 

Catalyst Rate constant k Source 
Co_spongin 
Ag_spongin 

Co-Ag_spongin 

0.52 min-1 
0.33 min-1 
0.82 min-1 

This work 

Ag nanoparticles stabilized by hydrogel 0.24 min-1 (Ai and Jiang 2013) 
mesoporous Ag NPS/carbon composite 0.32 min-1 (Chi et al., 2014) 

alloyed Cu/Ag NPs 0.23 min-1 (Wu et al., 2011) 
Co doped CuO NPs 0.26 min-1 (Sharma et al., 2017) 

Co2P nanowires 0.09 min-1 (Huang, Wu, and Cheng 2017) 

Nevertheless, the use of a renewable, three-dimensional support and the simple method of 
fabrication of spongin-based composites represent added value of the materials described here in 
comparison to other heterogeneous catalytic systems. 

Critical properties essential for the success of any heterogeneous catalyst include its stability during 
repeated use and easy recovery from the reaction mixture. Thus, to evaluate the recycling properties of 
the prepared materials, the same catalyst was used repeatedly five times. After each run, the catalyst 
was washed with water and ethanol, and dried. Plots of Ct/C0 versus time for each catalytic run are 
shown in Fig. 6. 

 

Fig. 6. Plots of Ct/C0 versus time for Co_spongin (a), Ag_spongin (b) and Co-Ag_spongin (c) 

It is apparent from Fig. 6a–c that for all tested catalysts the time of reaction increases with repeated 
use. The smallest increase in time is observed for the Ag_spongin catalyst. For the Co-Ag_spongin 
composite, the increase in reaction time is more significant than for Ag_spongin, but smaller than for 
Co_spongin. However, to decide whether the addition of cobalt has a negative influence on the stability 
of the prepared composites, kinetic parameters must be calculated for each catalyst. In Table 4, the rate 
constants calculated from the pseudo-first-order model are compared. 

The rate constants calculated for the Co-Ag_spongin composite is high only in the first and second 
cycle. Subsequently, a gradual decrease in the value of the k parameter for this catalyst is apparent. A 
similar  situation  is  observed  in  the  case  of  Co_spongin. These results may be explained by the lower 
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Table 4. Calculated rate constants of 4-nitrophenol reduction over successive catalytic cycles 

No. of cycle 
Rate constant (min-1) 

Co_spongin Ag_spongin Co-Ag_spongin 

1 0.52 0.32 0.86 

2 0.34 0.31 0.35 

3 0.31 0.27 0.25 

4 0.15 0.26 0.20 

5 0.16 0.25 0.19 

stability of the cobalt phase and blocking of the active sites of the catalyst over the reaction cycles. 
Interestingly, after the fifth run, the highest k parameter was calculated for Ag_spongin. For this 
material, the changes in the values of the rate constant are insignificant. This finding seems to be related 
to the chemical structure of spongin: the presence of free amide groups derived from cysteine and 
tyrosine led to better stability of the silver particles during the functionalization process. The results 
suggest that despite the high catalytic ability of Co_spongin, this material is the least stable, in view of 
the non-negligible decrease in the rate constant. Spongin modified with silver possesses higher stability; 
however, the rate of reduction is lower. Therefore, it may be assumed that the use of cobalt and silver 
together results in a material with higher catalytic ability and increased stability during reuse, in 
comparison to Co_spongin.  

Further, to evaluate the changes in the morphology of the prepared materials after five catalytic 
cycles, SEM images of the used catalysts were recorded (Fig. 7). 

 
Fig. 7. SEM images of Co_spongin (a), Ag_spongin (b) and Co-Ag_spongin (c) used five times in catalytic cycles 

From the images in Fig. 7 it is apparent that the structure and shape of the metallic phase do not 
change significantly after the catalytic tests. Moreover, the SEM images show that the size of the metallic 
grains remains unchanged after repeated reuse. The results provide evidence that spongin is 
a promising support for the metallic phase. The three-dimensional, fibrous structure of spongin, with 
a fascinating system of open-porous channels and a variety of functional groups, makes this material 
attractive for use in heterogeneous catalysis. The efficient functionalization method led to new 
composites which possess superior catalytic activity in the reduction of 4-nitrophenol. This study points 
a new direction for the development of heterogeneous catalysts based on spongin. 

4. Conclusions 

In conclusion, spongin of commercial sponge origin can be successfully applied as a support for 
cobalt/cobalt oxide, silver particles, as well as cobalt/cobalt oxide–silver particles. The facile 
functionalization method proposed in this work requires only the use of water solutions of cobalt and 
sodium salt, sodium borohydride as a reducer, and spongin skeleton. The naturally prefabricated, three-
dimensional structure of spongin, with interconnected open-porous systems, provides excellent 
support for the metallic phase. The resulting composites are evenly covered with metallic particles, 
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which form agglomerates of different size and shape. EDS, TG/DTA and FTIR confirmed the successful 
synthesis of cobalt-based, silver-based and cobalt–silver-based composites. These materials exhibited 
good activity in the reduction of 4-nitrophenol to 4-aminophenol in water. The kinetic and reusability 
studies provide evidence that functionalization with both metallic phases results in composites with 
enhanced catalytic performance and good reusability properties, as well as significantly higher thermal 
stability. However, further work to explore the application of these composites, as well as the 
modification of synthesis methods, are important for the development of catalysts which might be 
utilized in other oxidation-reduction reactions. Nevertheless, spongin shows promise as a facile, cost-
effective, renewable and environmentally friendly three-dimensional biopolymer for heterogeneous 
catalysis. 
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