The recycling-oriented material characterization of hard disk drives with special emphasis on NdFeB magnets
More details
Hide details
Division of Analytical Chemistry and Analytical Metallurgy, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
Department of Materials Science, Strength and Welding Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Anna Danczak   

Wroclaw University of Science and Technology, Department of Chemistry, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
Physicochem. Probl. Miner. Process. 2018;54(2):363–376
Hard disk drives (HDDs) consist of many components made from various materials: e.g. aluminum, steel, copper and rare earth elements (REEs). Recycling and reuse of these materials is desirable for economic and environmental reasons. Developing of potential HDDs recycling methods requires knowledge about HDDs material characteristic. The study aims to explore knowledge about structure and chemical composition of HDDs main components with special emphasis on NdFeB magnets. HDDs collected for the experiments came from Desktop PCs and Notebooks. The dependence between the average mass of HDDs components and such parameters as producer, year and country of production and disk capacity was analyzed. Chemical composition of NdFeB magnets and the heaviest components (i.e. top cover, mounting chassis, platters and metallic plates from magnet assembly of actuator) was analyzed by various analytical methods. The heaviest HDDs main components: top cover and mounting chassis, with the highest recycling potential, are made of aluminum and steel respectively. The majority of HDDs components showed also the existence of different alloy additions: C, Mg, Si, P, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sn and Pb. NdFeB magnets constitute 2.2 ± 1.1% of the average HDD from Desktop PC (517.3 ± 64.2 g) and 3.2 ± 1.2% from Notebook (108.2 ± 24.3 g). The chemical composition of NdFeB magnets from collected HDDs changes in the wide range: Fe (53–62%), Nd (25–29%), Pr (2–13%), Dy (0.1– 1.4%), Ni (2–6%), Co (0.5–3.6%), B (0.8–1.0%). Recycling of permanent magnets based on NdFeB alloys is potential remedy to fill the gap in the supply of rare earth elements on the global REEs market.
BINNEAMANS, K., JONES, P. T., BLANPAIN, B., VAN GERVEN, T., YANG, Y., WALTON, A., BUCHERT, M., 2013, Recycling of rare earths: a critical review, J. Clean. Prod. 51, 1-22.
BRISTØL, L. M. L., 2011, Reduction and recycling of rare earth elements, TMT 4500 Materials Technology, Specialization project, NTNU, Trondheim.
CASTOR, S. B., HEDRICK, J. B., 2006, Rare earth elements, Industrial Minerals and Rocks, 769-792. http://www.fieldexexploration.....
CHANCEREL, P., MARWEDE, M., NISSEN, N. F., LANG, K. D., 2015, Estimating the quantities of critical metals embedded in ICT and consumer equipment, Resour. Conserv. Recy. 98, 9-18.
CHANCEREL, P., ROTTER, S., 2009, Recycling-oriented characterization of small waste electrical and electronic equipment, Waste Manage. 29, 2336-2352.
CHAREWICZ, W., 1990, Rare earths elements, sources, technologies, application (in polish), WNT, Warszawa, 3:87-93.
DU, X. Y., GRAEDEL, T. E., 2011, Global rare earth in-use stocks in NdFeB permanent magnets, J. Ind. Ecol. 15(6), 836-843.
ELLIS, T. W., SCHMIDT, F. A., JONES, L. L., 1994, Methods and opportunities in the recycling of rare earth based materials,, In: LIDDELL, K.C., BAUTISTA, R.G., ORTH, R.J., Symposium on Metals and Materials Waste Reduction, Recovery and Remediation, at 1994, The Minerals, Matals & Mateials Society, Warrendale Pensylwania, 199-206.
European Commission, 2010, Critical raw materials for the EU, Report of the Ad-hoc Working Group on defining critical raw materials,
GOONAN, T. G, 2011, Rare earth elements-end use and recyclability, Scientific US Geological Survey, Reston, Scientific Investigations Report 2011-5094, 2-12, sir2011-5094.pdf.
GREADEL, T. E., HARPER, E. M., NASSAR, N. T., RECK, B. K., 2013, On the materials basis of modern society, Proceeding of the National Academy of Science 112(20), 6295-6300.
GUTFLEISCH, O., WILLARD, M. A., BRUCK, E., CHEN, C. H, SANKAR, S. G., LIU, J. P., 2011, Magnetic materials and devices for the 21st centrury: stronger, lighter, and more energy efficient, Adv. Mater. 23, 821-842.
HABIB, K., PARAJULY, K., WENZEL H., 2015, Tracking the end-of-life flow of resources in electronic waste - the case of computer hard disk drives, Environ. Sci. Technol. 49(20), 12441-12449.
HABIB, K., SCHIBYE, P. K., VESTBO, A. P., DALL, O., WENZEL, H., 2014, Material flow analysis of NdFeB magnets for Denmark: A comprehensive waste flow sampling and analysis approach, Environ. Sci. Technol. 48, 12229-12237.
HARRIS, R. I., WILLIAM, A., WALTON, A., SPEIGHT, J., 2012, Magnet recycling, US Patent 2012/0137829,
HUMPHRIES, M., 2013, Rare earth elements: The global supply chain, Congressional Research Service Report for Congress, 7-5700,
HURST, C., 2010, China’s rare earth elements industry: What can the west learn?, Institute for the Analysis of Global Security,
ITOH, M., MASUDA M., SUZUKI, S., MACHIDA, K. I., 2004, Recycling of rare earth sintered magnets as isotropic bonded magnets by melt-spinning, J. Alloys Compd. 374, 393-396.
LEONOWICZ, M., WYSLOCKI, J.J., 2005, Współczesne magnesy, WNT, Warszawa.
Oakdene Hollins Research & Consulting 2010, Lanthanide Resources and Alternatives, A report for Department for Transport and Department for Business, Innovation Skillis, http://www.techmetalsresearch.... _Resources_and_Alternatives.pdf.
Öko-Institut E. V., 2011, Study on rare earths and their recycling, Darmstadt,
PASZOWSKI, L., 2009, Wpływ proszkowej fazy Nd-Fe-B w formowanych wtryskowo kompozytach magnetycznych o osnowie polimerowej na ich właściwości magnetyczne i mechaniczne, PhD thesis, Politechnika Warszawska, Warszawa.
IAEA (International Atomic Energy Agency), 2011, Radiation protection and NORM residue management in the production of rare earths from thorium containing minerals, Safety Reports Series No. 68, ,
SAITO, T., SATO, H., OZAWA, S., YU, J., MOTEGI, T., 2003, The extraction of Nd from waste Nd-Fe-B alloys by the glass slag method, J. Alloys Compd. 353, 189-193.
SIMONI, M., KUHN, E. P., MORF, L. S., KUENDIG, R., ADAM, F., 2015, Urban mining as a contribution to the resource strategy of the Canton of Zurich, Waste Manag.
SPRECHER, B., XIAO, Y., WALTON, A., SPEIGHT, J., HARRIS, R., KLEIJN, R., VISSER, G., KRAMER, G. J., 2014, Life cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnets, Environ. Sci. Technol. 48, 3951-3958.
SPRECHER, B., KLEIJN, R., KRAMER, G. J., 2014, Recycling potential of neodymium: The case of computer hard disk drives, Environ. Sci. Technol. 48, 9506-9513.
SZALATKIEWICZ, J., 2010, Resources recovery from computer hard disk drives, Inżynieria Ekologiczna 23, 77-87.
TAKEDA, O., OKABE, T. H., UMETSU, Y., 2004, Phase equilibrium of the system Ag-Fe-Nd and Nd extraction from magnets scraps using molten silver, J. Alloys Compd. 397, 305-313.
TAKEDA, O., OKABE, T. H., Umetsu, Y., 2006, Recovery of neodymium from mixture of magnet scrap and other scrap, J. Alloys Compd. 408-412, 387-390.
UBERSCHAAR, M., ROTTER, V. S., 2014, Enabling the recycling of rare earth elements through product design and trend analyses of hard disk drives, J. Mater. Cycles Waste Manag. 17, 266-281.
UNEP Status Report, 2011, Recycling Rates of Metals, UNEP International Resource Panel,
WALTON, A., WILLIAMS, A., 2011, Rare earth recovery, Mater. World 19, 24-26.
ZAKOTNIK, M., HARRIS, I. R., WILLIAMS, A. J., 2009, Multiple recycling of Nd-Fe-B-type sintered magnet, J. Alloys Compd. 469, 314-321.
ZAKOTNIK, M., HARRIS, I. R., WILLIAMS, A.J., 2008, Possible methods of recycling Nd-Fe-B-type magnets using the HD/degassing process, J. Alloys Compd. 450, 525-531.