Influence of dissolved air on bubble attachment to highly oriented pyrolytic graphite
 
More details
Hide details
1
Future Industries Institute, Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
2
School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
3
Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
4
Division of Information Technology, Engineering and the Environment, University of South Australia, Mawson Lakes, SA 5095, Australia
CORRESPONDING AUTHOR
Marta Krasowska   

Future Industries Institute, Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia, Mawson Lakes Campus, 5095 Mawson Lakes, Australia
 
Physicochem. Probl. Miner. Process. 2018;54(1):163–173
KEYWORDS
TOPICS
ABSTRACT
The effect of air, dissolved in 10-1 M KCl solution, on bubble attachment to the smooth hydrophobic surface of highly oriented pyrolytic graphite was studied. The stability of a wetting film in such a system is governed by surface forces, i.e. electrostatic and van der Waals interactions. At the high ionic strength investigated, the electric double layer forces are both weak and of short range, therefore the stability of the wetting film is dominated by van der Waals interactions. The Hamaker coefficient for the highly oriented pyrolytic graphite-KCl aqueous solution-air system is negative and hence van der Waals interactions are repulsive. A repulsive force should stabilize the wetting film, preventing its rupture and bubble attachment to the highly oriented pyrolytic graphite surface. Many experimental studies have found that wetting films are not stable at graphite or coal surfaces, and air bubbles attach. In the present experiments, the stability of the wetting films decreased with increasing amount of dissolved air. The time required for film drainage, rupture, and air bubble attachment was shortened by two orders of magnitude when the experiments were performed in air saturated 10-1 M KCl solution. This instability was attributed to an increasing number of nano- and submicron- bubbles nucleated at the graphite surface. The Hamaker coefficient across the air-KCl aqueous solution-air system is positive and hence van der Waals interactions are attractive, resulting in wetting film rupture and macroscopic air bubble attachment to a highly oriented pyrolytic graphite surface decorated with resident nano- and submicro-metre bubbles.
 
REFERENCES (53)
1.
Chon U, C., Ohl, C.-D., 2012. Total-internal-reflection-fluorescence microscopy for the study of nanobubble dynamics, Phys. Rev. Let., 109, 174501.
 
2.
Considine, R.F., Hayes, R.A., Horn, R.G, 1999. Forces measured between latex spheres in aqueous electrolyte: non-DLVO behavior and sensitivity to dissolved gas, Langmuir, 15, 1657-59.
 
3.
Craig, V.S.J., 2011. Very small bubbles at surfaces - the nanobubble puzzle, Soft Matter, 7, 40-48.
 
4.
Donose, B. C., Taran, E., Hampton, M.A., Karakashev, S.I., Nguyen. A.V., 2009. Carbon nanotube air-bubble interactions studied by atomic force microscopy, Adv. Powder Technol., 20, 257-261.
 
5.
Eriksson, J.Ch., Ljunggren, S., Claesson, P.M., 1989. A phenomenological theory of long-range hydrophobic attraction forces based on a square-gradient variational approach, J. Chem. Soc. Faraday Trans., 85, 163-176.
 
6.
German, S. R, Wu, X., An, H., Craig, V.S.J., Mega, T.L., Zhang, X., 2014. Interfacial nanobubbles are leaky: Permeability of the gas/water interface, ACS nano, 8, 6193-6201.
 
7.
Gong, W., Stearnes, J., Fornasiero, D., Hayes, R.A., Ralston, J., 1999. The influence of dissolved gas on the interactions between surfaces of different hydrophobicity in aqueous media Part II. A spectroscopic study, Phys. Chem. Chem. Phys., 1, 2799-2803.
 
8.
Hampton, M.A., Nguyen, A.V., 2010. Nanobubbles and the nanobubble bridging capillary force, Adv. Colloid Interface Sci., 154, 30-55.
 
9.
Hogg, R., Healy, T., Fuerstenau, D.W., 1966. Mutual coagulation of colloidal dispersions, Trans. Faraday Soc., 62, 1638-1651.
 
10.
Ishida, N., Inoue, T., Miyahara, M., Higashitani, K., 2000. Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy, Langmuir, 16, 6377-80.
 
11.
Israelachvili, J N. 2011. Intermolecular and Surface Forces, Elsevier Science Publishing Co Inc, San Diego.
 
12.
Israelachvili, J. N., Pashley, R.M., 1984. Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions, J. Colloid Interface Sci., 98, 500-514.
 
13.
Israelachvili, J., Pashley, R., 1982. The hydrophobic interaction is long range, decaying exponentially with distance, Nature, 300, 341-342.
 
14.
Jiang, L., Krasowska, M., Fornasiero, D., Koh, P., Ralston, J., 2010. Electrostatic attraction between a hydrophilic solid and a bubble, Phys. Chem. Chem. Phys., 12, 14527-14533.
 
15.
Karpitschka, S., Dietrich, E., Seddon, J.S.T., Zandvliet, H.J.W., Lohse, D., Riegler, H., 2012. Nonintrusive optical visualization of surface nanobubbles, Phys. Rev. Let., 109, 066102.
 
16.
Klaseboer, E., Manica, R., Chan, D.Y.C., Khoo, B C., 2011. BEM simulations of potential flow with viscous effects as applied to a rising bubble, Eng. Anal. Bound. Elem., 35, 489-494.
 
17.
Kor, M., Korczyk, P. M., Addai-Mensah, J., Krasowska, M., Beattie, D.A., 2014. Carboxymethylcellulose Adsorption on Molybdenite: The Effect of Electrolyte Composition on Adsorption, Bubble-Surface Collisions, and Flotation', Langmuir, 30, 11975-11984.
 
18.
Kosior, D., Zawala, J., Krasowska, M., Malysa, K., 2013. Influence of n-octanol and α-terpineol on thin film stability and bubble attachment to hydrophobic surface, Phys. Chem. Chem. Phys., 15, 2586-2595.
 
19.
Krasowska, M., Kolasinska, M., Warszynski, P., Malysa, K., 2007. Influence of polyelectrolyte layers deposited on mica surface on wetting film stability and bubble attachment, J. Phys. Chem. C, 111, 5743-49.
 
20.
Krasowska, M., Krastev, R., Rogalski, M., Malysa, K., 2007. Air-facilitated three-phase contact formation at hydrophobic solid surfaces under dynamic conditions, Langmuir, 23, 549-557.
 
21.
Krasowska, M., Malysa, K., 2007a. Kinetics of bubble collision and attachment to hydrophobic solids: I. Effect of surface roughness, Int. J. Miner. Proces., 81, 205-216.
 
22.
Krasowska, M., Malysa, K., 2007b. Wetting films in attachment of the colliding bubble, Adv. Colloid Interface Sci., 134, 138-150.
 
23.
Krasowska, M., Zawala, J., Malysa, K., 2009. Air at hydrophobic surfaces and kinetics of three phase contact formation, Adv. Colloid Interface Sci., 147: 155-169.
 
24.
Lou, S.-T., Ouyang, Z.-Q., Zhang, Y., Li, X.-J., Hu, J., Li, M.-Q., Yang, F.-J., 2000. Nanobubbles on solid surface imaged by atomic force microscopy, J. Vac. Sci. Technol. B, 18, 2573-2575.
 
25.
Lou, S., Gao, J., Xiao, X., Li, X., Li, G., Zhang, Y., Li, M., Sun, J., Li, X., Hu, J., 2002. Studies of nanobubbles produced at liquid/solid interfaces, Mater. Charact., 48, 211-214.
 
26.
Mahnke, J., Schulze, H.J., Stöckelhuber, K.W., Radoev, B. ,1999. Rupture of thin wetting films on hydrophobic surfaces: Part I: methylated glass surfaces, Colloids Surf. A, 157, 1-9.
 
27.
Malysa, K., Krasowska, M., Krzan, M., 2005. Influence of surface active substances on bubble motion and collision with various interfaces, Adv. Colloid Interface Sci., 114, 205-225.
 
28.
Malysa, K., Zawala, J., Krzan, M., Krasowska, M., 2011. Bubbles Rising in Solutions, Local and Terminal Velocities, Shape Variations and Collisions with Free Surface, Brill.
 
29.
Mezger, M., Reichert, H., Schöder, S., Okasinski, J., Schröder, H., Dosch, H., Palms, D., Ralston, J., Honkimäki, V., 2006. High-resolution in situ x-ray study of the hydrophobic gap at the water–octadecyl-trichlorosilane interface, Proc. Nat. Acad. of Sci., 103, 18401-1804.
 
30.
Mishchuk, N., Ralston, J., Fornasiero, D., 2006. Influence of very small bubbles on particle/bubble heterocoagulation, J. Colloid Interface Sci., 301, 168-175.
 
31.
Nguyen, A.V., Ralston, J., Schulze, H.J., 1998. On modelling of bubble–particle attachment probability in flotation, Int. J. Miner. Proces., 53, 225-249.
 
32.
Nguyen, A.V., Schulze, H.J., 2003. Colloidal science of flotation, CRC Press.
 
33.
Parker, J.L., Claesson, P.M., Attard, P., 1994. Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces, J. Phys. Chem., 98, 8468-8480.
 
34.
Parsegian, V.A., 2005. Van der Waals forces: a handbook for biologists, chemists, engineers, and physicists, Cambridge University Press.
 
35.
Rogers, M.H., Lance, G.N., 1960. The rotationally symmetric flow of a viscous fluid in the presence of an infinite rotating disk, J. Fluid Mech., 7, 617-631.
 
36.
Sides, P.J., Newman, J., Hoggard, J.D., Prieve, D.C., 2006. Calculation of the streaming potential near a rotating disk, Langmuir, 22, 9765-9769.
 
37.
Sides, P.J., Prieve, D.C., 2013. Surface conductivity and the streaming potential near a rotating disk-shaped sample, Langmuir, 29, 13427-13432.
 
38.
Simonsen, A.C., Hansen, P.L., Klösgen, B., 2004. Nanobubbles give evidence of incomplete wetting at a hydrophobic interface, J. Colloid Interface Sci, 273, 291-299.
 
39.
Slavchov, R., Radoev, B., Stöckelhuber, K.W., 2005. Equilibrium profile and rupture of wetting film on heterogeneous substrates, Colloids Surf. A., 261, 135-140.
 
40.
Snoswell, D.R.E., Duan, J., Fornasiero, D., Ralston, J., 2003. Colloid stability and the influence of dissolved gas, J. Phys. Chem. B, 107, 2986-2994.
 
41.
Steitz, R., Gutberlet, T., Hauss, T., Klösgen, B., Krastev, R., Schemmel, S., Simonsen, A.C., Findenegg, G.H., 2003. Nanobubbles and their precursor layer at the interface of water against a hydrophobic substrate, Langmuir, 19, 2409-2418.
 
42.
Stöckelhuber, K.W., Radoev, B., Wenger, A., Schulze, H.J., 2004. Rupture of wetting films caused by nanobubbles, Langmuir, 20, 164-168.
 
43.
Trefalt, G., Szilagyi, I., Oncsik, T., Sadeghpour, A., Borkovec, M., 2013. Probing colloidal particle aggregation by light scattering, Int. J. Chem., 67, 772-776.
 
44.
Wrobel, S. 1952. The adsorption of nuclear gas - its role in froth flotation', Mine Quarry Eng., 313-317.
 
45.
Wu, J., Delcheva, I., Ngothai, Y., Krasowska, M., Beattie, D.A., 2015. Bubble-surface interactions with graphite in the presence of adsorbed carbomethylcellulose, Soft Matter, 11, 587-599.
 
46.
Yang, C., Dabros, T., Li, D., Czarnecki, J., Masliyah, J.H., 2001. Measurement of the Zeta Potential of Gas Bubbles in Aqueous Solutions by Microelectrophoresis Method, J. Colloid Interface Sci., 243, 128-135.
 
47.
Yang, J., Duan, J., Fornasiero, D., Ralston, J., 2003. Very Small Bubble Formation at the Solid−Water Interface, J. Phys. Chem. B, 107, 6139-6147.
 
48.
Yang, J., Duan, J., Fornasiero, D., Ralston, J., 2007.'Kinetics of CO2 nanobubble formation at the solid/water interface, Phys. Chem. Chem. Phys., 9, 6327-6332.
 
49.
Yoon, R.-H., Mao, L., 1996. Application of extended DLVO theory, IV: derivation of flotation rate equation from first principles, J. Colloid Interface Sci., 181, 613-626.
 
50.
Zawala, J., Kosior, D., Malysa, K., 2015. Formation and influence of the dynamic adsorption layer on kinetics of the rising bubble collisions with solution/gas and solution/solid interfaces, Adv. Colloid Interface Sci., 222, 765-778.
 
51.
Zawala, J., Swiech, K., Malysa, K.. 2007. A simple physicochemical method for detection of organic contaminations in water, Colloids Surf. A., 302, 293-300.
 
52.
Zhang, L., Zhao, B., Xue, L., Guo, Z., Dong, Y., Fang, H., Tai, R., Hu, J., 2013. Imaging interfacial micro-and nano-bubbles by scanning transmission soft X-ray microscopy, J. Synchr. Rad., 20, 413-418.
 
53.
Zhang, X.H., Maeda, N., Craig, V.S.J., 2006. Physical properties of nanobubbles on hydrophobic surfaces in water and aqueous solutions, Langmuir, 22, 5025-5035.
 
eISSN:2084-4735
ISSN:1643-1049