Hydrometallurgical treatment of hazardous copper Cottrell dusts to recover copper
More details
Hide details
Centro Nacional de Investigaciones Metalurgicas CENIM-CSIC
Poznan University of Technology, Institute of Chemical Technology and Engineering, ul. Berdychowo 4, Poznan, Poland
Francisco Jose Alguacil   

Centro Nacional de Investigaciones Metalurgicas CENIM-CSIC, Avda. Gregorio del Amo 8, 28040 Madrid, Spain
Physicochem. Probl. Miner. Process. 2018;54(3):771–780
Copper flue dusts, or copper Cottrell dusts, from three types of copper smelting furnaces were leached with different ammonia-based reagents (ammonium chloride, ammonium carbonate and aqueous ammonia solutions) to dissolve the oxidised copper species via the formation of copper-ammonia complexes, so that most of the copper-accompanying metals, especially iron, remained in the solid residue. Such copper-bearing dusts are not only valuable secondary source of copper but also are considered as hazardous materials and cannot be dumped as such. Therefore, two procedures for copper dust treatment are proposed, one of them includes ammonium-based leaching, liquid-liquid extraction with LIX 860 (aldoxime), LIX 84 (ketoxime) or LIX 54 (β-diketone) and electrowinning to grade A copper cathode. The other one covers also ammonium-based leaching followed by cementation with zinc to copper cement as a final product.
ALGUACIL, F.J., 1999. Recovery of copper from ammoniacal/ammonium carbonate medium by LIX 973N, Hydrometallurgy 52, 55-61.
ALGUACIL, F.J., COBO, A., ALONSO, M., 2002. Copper separation from nitrate/nitric acid media using Acorga M5640 extractant. Part I: solvent extraction study, Chem. Eng. J. 85, 259-263.
ALGUACIL, F.J., MAGNE, L., NAVARRO, P. SIMPSON, J., 1996. Hydrometallurgical treatment of copper flue dusts. Removal of arsenic from the leaching solutions, Rev. Metal. Madrid 32, 400-407.
ALGUACIL, F.J., GARCIA-DIAZ, I., LOPEZ, F., RODRIGUEZ, O., 2015. Recycling of copper flue dust via leaching-solvent extraction processing, Des. Water Treat. 56:5, 1202-1207.
BAKHTIARI, F., ATASHI, H., ZIVDAR, M., SEYEDBAGHERI, S., FAZAELIPOOR, M.H., 2011. Bioleaching kinetics of copper from copper smelter dusts, J. Ind. Eng. Chem. 17, 29-35.
BALLADARES, E., KELM, V., HELLE, S., PARRA, R., ARANEDA, E., 2015. Chemical-mineralogical characterization of copper smelting flue dust, DYNA 82, 90-95.
BERMEJO, J.C., ALONSO, M., SASTRE, A.M., ALGUACIL, F.J., 2000. Solvent extraction of Cu(II) by LIX 54-100 and its application to a solid supported liquid membrane system, J. Chem. Res. (S) 9, 479-481.
BINGÖL, D., CANBAZOGLU, M., AYDOGAN, S., 2005. Dissolution kinetics of malachite in ammonia/ammonium carbonate leaching, Hydrometallurgy 76, 55-62.
EUROPEAN COPPER INSTITUTE, http://www.copperalliance.eu (accessed September, 2016).
GONZALEZ, A., FONT, O., MORENO, N., QUEROL, X., ARANCIBIA, N., NAVIA, R., 2017. Copper flash smelting flue dust as a source of germanium, Waste Biomass Valor 8, 2121-2129.
HE, X., CHAI, Z., SHI, J., LI, Y., FANG, Z., LI, F., 2013. Leaching of elements from flue dust produced in copper scrap smelting process, Toxicol. Environ. Chem. 95, 184-189.
KLINK, C., EISEN, S., DAUS, B., HEIM, J., SCHLOMANN, M., SCHOPF, S., 2016. Investigation of Acidithiobacillus ferrooxidans in pure and mixed-species culture for bioleaching of Theisen sludge from former copper smelting, J. Appl. Microbiol. 120, 1520-1530.
LI, Q., ZHAO, Y.Z., 2014. An environmentally friendly process to recover zinc from flue dusts of secondary copper industry, Res. J. Chem. Environ. 18, 13-19.
LIAO, T., CHEN, B., CHEN, Y., 2012. Preparation of high-purity sponge bismuth from copper converter flue dusts by hydrometallurgical process, J. Rare Metals 36, 966-972.
LIMPO, J.L., LUIS, A., HERNANDEZ, A., ALGUACIL, F.J., 1985. Spanish Patent 545698.
MARTIN, M.I., LOPEZ-DELGADO, A., LOPEZ, F.A., COEDO, A.G., DORADO, M.T., ALGUACIL, F.J., 2003. Treatment of copper converter flue dust for the separation of metallic/non-metallic copper by hydrometallurgical processing, J. Chem. Eng. Japan 3, 1498-1502.
MONTENEGRO, V., SANO, H., FUJISAWA, T., 2013. Recirculation of high arsenic content copper smelting dust to smelting and converting processes, Min. Eng. 49, 184-189.
MORALES, A., CRUELLS, M., ROCA, A., BERGO, R., 2010. Treatment of copper flash smelter flue dusts for copper and zinc extraction and arsenic stabilization, Hydrometallurgy 105, 148-154.
QIANG, L., PINTO, I.S.S., YOUCAI, Z., 2014. Sequential stepwise recovery of selected metals from flue dusts of secondary copper smelting, J. Clean. Prod. 84, 663-670.
REGEL-ROSOCKA, M., ALGUACIL, F.J., 2013. Recent trend in metals extraction, Rev. Metal. Madrid 49, 292-315.
ROY, S., SARKAR, S., DATTA, A., REHANI, S., 2016. Importance of mineralogy and reaction kinetics for selecting leaching methods of copper from copper smelter slag, Sep. Sci. Technol. 51, 135-146.
RUIZ, O., CLEMENTE, C., ALONSO, M., ALGUACIL, F.J., 2007. Recycling of an electric furnace flue dust to obtain high grade ZnO, J. Hazard. Mat. 141, 33-36.
SHIN, S.K., KIM, W.-I., JEON, T.-W., KANG, Y.-Y., JEONG, S.-K., YEON, J.-M., SOMASUNDARAM, S., 2013. Hazardous waste characterization among various thermal processes in South Korea: A comparative analysis, J. Hazard. Mat. 260, 157-166.
VITKOVA, M., ETTLER, V., HYKS, J., ASTRUP, T., KRIBEK, B., 2011. Leaching of metals from copper smelter flue dust (Mufulira, Zambian Copperbelt), Appl. Geochem. 26, 5263-5266.