Extracellular polymeric substance of Rhodococcus opacus bacteria effects on calcium carbonate formation
 
More details
Hide details
1
Maria Curie-Sklodowska University
 
2
Department of Biochemistry, Maria Curie-Sklodowska University, Lublin, Poland
 
3
Institute of Agrophysics Polish Academy of Science, Lublin, Poland
 
4
Department of Physical Chemistry - Interfacial Phenomena, Faculty of Chemistry, Lublin, Poland
 
 
Corresponding author
Aleksandra Szcześ   

Maria Curie-Sklodowska University, M. Curie-Sklodowka sq. 3, 20-031 Lublin, Poland
 
 
Physicochem. Probl. Miner. Process. 2018;54(1):142-150
 
KEYWORDS
TOPICS
ABSTRACT
Extracellular substance extracted from the bacterial strain Rhodococcus opacus was used as a template for calcium carbonate precipitation from CaCl2 and Na2CO3 solutions at 25oC and 37oC. Obtained crystals were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. Kinetics of precipitation was investigated by conductivity measurements. The obtained results show that the used biopolymer does not affect the crystal structure but acts as a nucleation centers leading to the formation of calcite crystals with regular size. This effect is concentration dependent i.e. the EPS concentration increase causes the crystal size decreases, and is greater if calcium chloride solution if mixed with EPS 15 min before the addition of sodium carbonate solution. The temperature increase strengthens this effect .
 
REFERENCES (27)
1.
LIAN B, HU Q, CHEN J, JI J, H. TENG H., 2006. Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochim. Cosmochim. Acta 70, 5522–5535.
 
2.
BAINS A., DHAMI N.K., MUKHERJEE A., REDDY M.S., 2015. Influence of Exopolymeric Materials on Bacterially Induced Mineralization of Carbonates. Appl. Biochem. Biotechnol. 175, 3531–3541.
 
3.
BRAISSANT O., CAILLEAU G., DUPRAZ C., VERRECCHIA E.P., 2003. Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of Exopolysaccharides and amino acids. J. Sediment. Res. 73, 485–490.
 
4.
BRAISSANT O., DECHO A.W., DUPRAZ C., GLUNK C., PRZEKOP K.M., VISSCHER P.T., 2007. Exopolymeric substances of sulfate-reducing bacteria:Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5, 401–411.
 
5.
CZEMIERSKA M., SZCZEŚ A., HOŁYSZ L., WIATER A., JAROSZ-WILKOLAZKA A., 2017. Characterisation of exopolymer R-202 isolated from Rhodococcus rhodochrous and its flocculating properties. Eur. Polymer J. 88, 21-33.
 
6.
DHAMI N.D., SUDHAKARA REDDY M., MUKHERJEE A. 2013, Biomineralization of calcium carbonates and their engineered applications: a review. Front. Microbiol. 4, 1-13.
 
7.
DICK J., DE WINDT W., DE GRAEF W., SAVEYN H., VAN DER MEEREN P. DE BELIE N., VERSTRAETE W., 2006. Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus Species. Biodegradation 17, 357–367.
 
8.
ERCOLE C., CACCHIO P., BOTTA A.L., CENTI V., LEPIDI A., 2007. Bacterially Induced Mineralization of Calcium Carbonate: The Role of Exopolysaccharides and Capsular Polysaccharides. Microsc. Microanal. 13, 42–50.
 
9.
FERRIS F.G., PHOENIX V., FUJITA Y., SMITH R.V., Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20°C in artificial groundwater. Geochim. Cosmochim. Acta 67(8), 1701–1722.
 
10.
GABRELI C., JAOUHARI R., JOIRET R., JOIRET S., MAURIN G., 2000. In situ Raman spectroscopy applied to electrochemical scaling. Determination of the structure of vaterite. J. Raman Spectrosc. 31, 497-501.
 
11.
HAMMES F., BOON N., DE VILLIERS j., VERSTRAETE W., SICILIANO S.D., 2003. Strain-Specific Ureolytic Microbial Calcium Carbonate Precipitation. Appl. Environ. Microb. 68(8), 4901–4909.
 
12.
HOOD M.A., LANDFESTER K., MUÑOZ-ESPI R., 2014, The role of residue acidity on the stabilization of vaterite by amino acids and oligopeptides. Cryst. Growth Des. 14, 1077-1085.
 
13.
HUANG Z. and ZHANG G. 2012. Biomimetic Synthesis of Aragonite Nanorod Aggregates with Unusual Morphologies Using a Novel Template of Natural Fibrous Proteins at Ambient Condition. Cryst. Growth Des. 12, 1816−1822.
 
14.
KAWAGUCHI T., and DECHO A.W., 2002. A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism. J. Cryst. Growth 240, 230–235.
 
15.
KREMER B., KAZMIERCZAK J. and STAL L.J., 2008. Calcium carbonate precipitation in cyanobacterial mats from sandy tidal flats of the North Sea. Geobiology 6, 46–56.
 
16.
LEE C.S., ROBINSON J., CHONG M.F., 2014. A review on application of flocculants in wastewater treatment. Process Saf. Environ. Prot. 92, 489–508.
 
17.
LIU C., WANG K., JIANG J.-H., LIU W.-J., WANG J.-Y., 2014. A novel bioflocculant produced by a salt-tolerant, alkaliphilic and biofilm-forming strain Bacillus agaradhaerens C9 and its application in harvesting Chlorella minutissima UTEX2341. Biochem. Eng. J. 93, 166–172.
 
18.
MA Y., QIAO Y., FENG Q., 2012. In-vitro study on calcium carbonate crystal growth mediated by organic matrix extracted from fresh water pearls. Mater. Sci. Eng. C 32, 1963–1970.
 
19.
OLAVI KAJANDER E. AND ÇIFTÇIOGLU N., 1998, Nanobacteria: An alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. Proc. Natl. Acad. Sci. USA 95, 8274–8279.
 
20.
PHILLIPS A., CUNNINGHAM A.B., GERLACH R., HIEBERT R., HWANG C., LOMANS B.P., WESTRICH J., MANTILLA C., KIRKSEY J., ESPOSOTO R., SPANGLER L., 2016. Fracture Sealing with Microbially-Induced Calcium Carbonate Precipitation: A Field Study. Environ. Sci. Technol. 50, 4111−4117.
 
21.
RIETVELD H.M., 1969. A profile refinement method for nuclear and magnetic structure. J. Appl. Cryst. 2, 65–71.
 
22.
RODRIGUEZ-NAVARRO C., JIMENEZ-LOPEZ C., RODRIGUEZ-NAVARRO A., GONZALEZ-MUNOZ M.T., RODRIGUEZ-GALLEGO M., 2007. Bacterially mediated mineralization of vaterite. Geochim. Cosmochim. Acta 71, 51197–1213.
 
23.
SADOWSKI z., BASTRZYK A., POLOWCZYK I., 2016. Effect of macromolecules on the structures of calcium carbonate, in: at the book "Calcium Carbonate, Occurrence, Characterization and Application, A. Cohen (Eds.) Nova Publisher, N. York, 2016, pp. 29-47.
 
24.
SCRIVENERA K.L., FÜLLMANNA T., GALLUCCIA E., WALENTAB G., BERMEJOB E., 2004. Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods. Cement Concrete Res. 34, 1541–1547.
 
25.
SZCZEŚ A., CZEMIERSKA M., JAROSZ-WILKOŁAZKA A., 2016. Calcium carbonate formation on mica supported extracellular polymeric substance produced by Rhodococcus opacus. J. Solid State Chem. 242, 212–221.
 
26.
SZCZEŚ A., STERNIK D., 2016. Properties of calcium carbonate precipitated in the presence of DPPC liposomes modified with the phospholipase A2. J. Therm. Anal. Calorim. 123, 2357–2365.
 
27.
XUE Z.H., Hu B.B., JIA X.L., WANG H.W., DU Z.L., 2009. Effect of the interaction between bovine serum albumin Langmuir monolayer and calcite on the crystallization of CaCO3 nanoparticles. Mater. Chem. Phys. 114, 47–52.
 
eISSN:2084-4735
ISSN:1643-1049
Journals System - logo
Scroll to top