1.013
IF5
0.901
IF
20
MNiSW
539
Cites 2016
 
 

Experimental investigations of preparation of calcite particles by ultrasonic treatment

 
1
ÖMER HALİSDEMİR UNIVERSITY
Physicochem. Probl. Miner. Process. 2017;53(2):859–868
Publish date: 2017-03-25
KEYWORDS:
TOPICS:
ABSTRACT:
This paper investigates breakage of calcite powder (d50 = 25.23 µm) to fine particle sizes using an ultrasonic generator (400 W, 24 kHz). The present study focuses on comminution of calcite powder in water media by ultrasonic treatment and the effect of some operational parameters such as treatment time (5–30 min), ultrasonic power (30-100% as amplitude), solid ratio (5-30% w/w), probe positions (0.5-2 cm) and cycle on the product size. Experimental results were evaluated on the basis of average particle size (d50). Sonication of calcite produced a drastic particle-size reduction (d50=12.89 µm) under optimal conditions.
CORRESPONDING AUTHOR:
Oner Yusuf Toraman   
ÖMER HALİSDEMİR UNIVERSITY, NIGDE UNIVERSITY FACULTY OF ENGINEERING MINING ENGINEERING DEPARTMENT, 51240 NIGDE, Turkey
 
REFERENCES:
1. FRANCO, F., CECILA, J.A., PEREZ-MAQUEDA, L.A., PEREZ-RODRIQUEZ, J.L., GOMES, C.S.F., 2007, Particle-size reduction of dickite by ultrasound treatments: Effect on the structure, shape and particle-size distribution, Appl. Clay Sci., 35, 119-127.
2. FRANCO, F., CECILA, J.A., PEREZ-MAQUEDA, L.A., PEREZ-RODRIQUEZ, J.L., 2004, The effect of ultrasound on the particle size and structural disorder of a well-ordered kaolinite, J. Colloid Interface Sci., 274, 107-117.
3. ISOPESCU, R., MOCIOI, M., MIHAI, M., MATEESCU, C., DABIJA, G., 2007, Modification of precipitated calcium carbonate particle size distribution using ultrasound field, Revista de Chimie, 58, 246-250.
4. LEIGHTON, T.G., The Acoustic Bubble, Academic Press, San Diego, 1994.
5. LEONG, T., MARTIN, G.J.O, ASHOKKUMAR, M., 2017, Ultrasonic encapsulation - A review, Ultrason. Sonochem., 35, 605–614.
6. LEONG, T., ASHOKKUMAR, M., KENTISH, S., 2011, The fundementals of power ultrasound - A review, Acoustics Australia, 39(2), 54-63.
7. MARKOVIC, S., MITRIC, M., STARCEVIC, G., USKOKOVIC, D., 2008, Ultrasonic de-aglomerasion of barium titanate powder, Ultrason. Sonochem., 15, 16-20.
8. MASON, T., LORIMER, J., 2002, Applied Sonochemistry: The Uses of Power Ultrasound in Chemistry and Processing, Wiley-VCH Verlag GmbH and Co. KGaA.
9. PEREZ-MAQUEDA, L.A., FRANCO, F., AVILES, M.A., POYATO, J., PEREZ-RODRIQUEZ, J.L., 2003, Effect of sonication on particle-size distribution in natural muscovite and biotite, Clays Clay Miner., 51, 701-708.
10. PEREZ-MAQUEDA, L., DURAN, A., Perez-RODRIGUEZ, J., 2005, Preparation of submicron talc particles by sonication, Appl. Clay Sci., 28, 245-255.
11. RAMAN, V., ABBAS, A., 2008, Experimental investigations on ultrasound mediated particle breakage, Ultrason. Sonochem., 15(1), 55-64.
12. SANTOS, R., CEULEMANS, P., FRANÇOIS, D., VAN GURVEN, T., 2011, Ultrasound-enhanced mineral carbonation, EPIC 2011 Symposium Series No. 157, 108-116.
13. SENTHILKUMAR, P.M., Chem. Eng. Thesis, MUICT, Mumbai, 1997.
14. SUSLICK, K.S., CASADONTE GREENT D., AND THOMPSON, M., 1987. Effects of high intensity ultrasound on inorganic solids, Ultrasonics, 25, 56-59.
15. SUSLICK, K.S., 1998, Kirk-Othmer Encyclopedia of Chemical Technology; 4th Ed. J. Wiley & Sons: New York, 26, 517-541.
eISSN:2084-4735
ISSN:1643-1049