Cites 2016

Behavior of gallium and germanium associated with zinc sulfide concentrate in oxygen pressure leaching

Fupeng Liu 1  ,  
Zhihong Liu 1,  
Yuhu Li 1,  
Central South University
Aalto University
Physicochem. Probl. Miner. Process. 2017;53(2):1047–1060
Publish date: 2017-05-07
The Fankou zinc concentrate (Guangdong province, China) was mineralogically characterized and results showed that the main germanium-bearing minerals in the sample comprised of zinc sulfide and galena, whereas gallium-bearing minerals were pyrite, sphalerite and silicate. Oxygen pressure leaching of zinc sulfide concentrate was carried out in order to investigate the effect of pressure, leaching time, sulfuric acid and copper concentrations on the leaching behavior of gallium and germanium. Under optimum conditions, leaching of Zn, Fe, Ge and Ga reached 98.21, 90.45, 97.45 and 96.65%, respectively. In the leach residues, it was determined that some new precipitates, such as PbSO4, CaSO4 and SiO2, were formed, which co-precipitated a certain amount of Ga and Ge from the leach solution. The results clearly indicated that Ga and Ge were much more difficult to leach than Zn, and provided answers to why the leaching efficiency of Ga is 10% lower when compared to Ge.
Fupeng Liu   
Central South University, School of Metallurgy and Environment, 410083 Changsha, China
1. BALDWIN, S.A., DEMOPOULOS, G.P., PAPANGELAKIS, V.G., 1995. Mathematical modeling of the zinc pressure leach process, Metall. Mater. Trans. B 26(5), 1035-1047.
2. BOLORUNDURO, S.A., DREISINGER, D.B., WEERT, G.V., 2003. Fundamental study of silver deportment during thepressure oxidation of sulphide ores and concentrates, Miner. Eng. 16(8), 695-708.
3. BROWN, J.A., PAPANGELAKIS, V.G., 2005. Interfacial studies of liquid sulphur during aqueous pressure oxidation of nickel sulphide, Miner. Eng. 18(15), 1378–1385.
4. COLLINS, M.T., MCCONAGHY, E.J., STAUFFER, R.F., DESROCHES, G.J., KRYSA, B.D., 1994. Starting up the sherritt zinc pressure leach process at Hudson Bay, J. Met. 46(4), 51-58.
5. COOK, N.J., CIOBANU, C.L., PRING, A., SKINNER, W., DANYUSHEVSKY, L., SHIMIZU, M., SAINI-EIDUKAT, B., MELCHER, F., 2009. Trace and minor elements in sphalerite: A LA-ICP-MS study, Geochim. Cosmochim. Acta 73, 4761-4791.
6. COOK, N.J., CIOBANU, C.L., WILLIAMS, T., 2011. The mineralogy and mineral chemistry of indium in sulphide deposits and implications for mineral processing, Hydrometallurgy 108(108), 226-228.
7. COOK, N.J., ETSCHMANN, B., CIOBANU, C.L., GERAKI, K., HOWARD, D., WILLIAMS, T., RAE, N., PRING, A., CHEN, G., JOHANNESSEN, B., BRUGGER, J., 2015. Distribution and Substitution Mechanism of Ge in a Ge-(Fe)-Bearing Sphalerite, Minerals 5, 117-132.
8. DEPUYDT, B., THEUWIS, A., ROMANDIC, I., 2006. Germanium: From the first application of Czochralski crystal growth to large diameter dislocation-free wafers, Mater. Sci. Semicond. Process. 9(4), 437-443.
9. FRENZEL, M., KETRIS, M.P., GUTZMER, J., 2014. On the geological availability of germanium, Mineralium Deposita 49, 471-486.
10. FRENZEL, M., HIRSCH, T., GUTZMER, J., 2016. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type-A meta-analysis, Ore Geol. Rev. 76, 52-78.
11. GEORGE, L.L., COOK, N.J., CIOBANU, C.L., 2016. Partitioning of trace elements in co-crystallized sphalerite–galena–chalcopyrite hydrothermal ores, Ore Geol. Rev. 77, 97-116.
12. HALFYARD, J.E., HAWBOLDT, K., 2011. Separation of elemental sulfur from hydrometallurgical residue: A review, Hydrometallurgy 109(1-2), 80-89.
13. JANKOLA, W.A., 1995. Zinc pressure leaching at Cominco, Hydrometallurgy 39(1), 63-70.
14. KASKIALA, T., 2002. Determination of oxygen solubility in aqueous sulphuric acid media, Miner. Eng. 15(11), 853-857.
15. KRYSA, B.D., 1995. Zinc pressure leaching at HBMS, Hydrometallurgy 39(1), 71-77.
16. LAMPINEN, M., LARRI, A., TURUNEN, I., 2015. Kinetic model for direct leaching of zinc sulfide concentrates at high slurry and solute concentration, Hydrometallurgy 153, 160-169.
17. LI, C.X., WEI, C., XU, H.S., DENG, Z.G. , LIAO, J.Q., LI, X.B., LI, M.T., 2010. Kinetics of indium dissolution from sphalerite concentrate in pressure acid leaching, Hydrometallurgy 105(1-2), 172-175.
18. LIANG, D.Q., WANG, J.K., WANG, Y.H., 2009. Difference in dissolution between germanium and zinc during the oxidative pressure leaching of sphalerite, Hydrometallurgy 95(1), 5-7.
19. MARKUS, H., FUGLEBERG, S.,VALTAKARI, D., SALMI, T., MURZIN, D. Y., LAHTINEN, M., 2004. Reduction of ferric to ferrous with sphalerite concentrate, kinetic modeling, Hydrometallurgy 73(3-4), 269–282.
20. MEYER, B., 1976. Elemental sulfur, Chem. Rev. 76(3), 366-388.
21. OWUSU, G., 1985. Interfacial studies in the zinc pressure Leach Technology, M.Sc. Thesis, University of British Columbia.
22. OWUSU, G., DREISINGER, D. B., PETERS, E.,1995. Interfacial effects of Surface-Active agents under zinc pressure leach conditions, Metall. Mater. Trans. B, 26(1), 5-12.
23. OZBERK, E., JANKOLA, W.A., VECCHIARELLI, M., KRYSA, B.D., 1995. Commercial operations of the Sherritt zinc pressure leach process, Hydrometallurgy 39(1-3), 49-52.
24. PAPANGELAKIS, V.G., DEMOPOULOS, G.P., 1991. Acid pressure oxidation of pyrite: reaction kinetics, Hydrometallurgy 26(3), 309-325.
25. RUBISOV, D.H., PAPANGELAKIS, V.G., 1995. Model-based analysis of pressure oxidation autoclave behavior during process upsets, Hydrometallurgy 39(1-3), 377-389.
26. SCHIMMEL, R.C., FABER, A.J., DE, W.H., BEERKENS, R.G.C., KHOE, G.D., 2001. Development of germanium gallium sulphide glass fibres for the 1.31 µm praseodymium-doped fibre amplifier, J. Non-Cryst. Solids 284(1), 188-192.
27. TROMANS, D., 1998. Oxygen solubility modeling in inorganic solutions: concentration, temperature and pressure effects, Hydrometallurgy 50(50), 279-296.
28. TONG, L., DREISINGER, D., 2009a. The adsorption of sulfur dispersing agents on sulfur and nickel sulfide concentrate surfaces, Miner. Eng. 22(5), 445-450.
29. TONG, L., DREISINGER, D., 2009b. Interfacial properties of liquid sulfur in the pressure leaching of nickel concentrate, Miner. Eng. 22(5), 456-461.
30. TORRALVO, F.A., FERNANDEZ-PEREIRA, C., 2011. Recovery of germanium from real fly ash leachates by ion-exchange extraction, Miner. Eng. 24, 35-41.
31. TYSZCZUK, K., KOROLCZUK, M., GRABARCZYK, M., 2007. Application of gallium film electrode for elimination of copper interference in anodic stripping voltammetry of zinc, Talanta 71(5), 2098-2101.
32. WAN, Q., WANG, T.H., FENG, T., LIU, X.H., LIN, C.L., 2002. Synthesis of large-area germanium cone-arrays for application in electron field emission, Appl. Phys. Lett. 81(17), 3281-3283.
33. YE, L., COOK, N.J., CIOBANU, C.L., LIU, Y.P., ZHANG, Q., GAO, W., YANG, Y.L., DANYUSHEVSKY, L.V., 2011. Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study, Ore Geol. Rev. 2011, 39, 188-217.
34. ZUO, X.H., 2009. Zinc sulfide concentrates oxygen pressure leaching two counter-current principle and comprehensive recovery of gallium germanium technology, Hunan Nonferrous Metals 25, 26-28.